Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective lambda holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392916 | PMC |
http://dx.doi.org/10.1128/AEM.72.2.1110-1117.2006 | DOI Listing |
Int J Mol Sci
January 2025
General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.
Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.
Objective: Helicobacter pylori is known for colonizing the gastric mucosa and instigating severe upper gastrointestinal diseases such as gastritis, gastroduodenal ulcers, and gastric cancer. To date, there is no data available on the oral cavity as transmission site, whether H. pylori can survive in the oral cavity or in human saliva.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil. Electronic address:
Researching disinfection strategies is pivotal because effectively eliminating bacteria and their byproducts during root canal treatment (RCT) remains a challenge. This study investigated the antimicrobial efficacy of natural antimicrobial compounds, propolis (PRO) and copaiba oil-resin (COR), compared to conventional agents in Endodontics. Antimicrobials were tested against endodontic pathogens via macrodilution with standardized inoculums to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC).
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil.
Failures in endodontic treatments are common due to microbial resistance in the pulp canal. The study evaluated the in vitro activity of polyhexamethylene guanidine hydrochloride (PHMGH) against endodontic strains, as well as in vivo toxicity. Using minimum inhibitory concentration and minimum bactericidal concentration techniques, PHMGH was effective against all microorganisms, even at low concentrations.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences (ICBM), Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38405-320, Brazil.
Aims: Bacterial resistance and systemic risks associated with periodontitis underscore the need for novel antimicrobial agents. Cannabis sativa is a promising source of antimicrobial molecules, and cannabidiol (CBD) attracts significant interest. This study evaluated the antibacterial and antibiofilm activity of CBD against periodontopathogens, and assessed its toxicity in vivo model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!