Background: Severe acute respiratory syndrome (SARS) is an infectious disease which was caused by a novel coronavirus (SARS-CoV). SARS has caused an outbreak in the world during 2003 and 2004, with 8098 individuals being infected and a death toll of 774 in 28 regions around the world. Specific humoral responses to viral infection remain unclear.
Objective: To analyse the antigenicity of the SARS-CoV genome and identify potential antigenic epitopes in the structural proteins.
Methods: Potential antigenic epitopes were identified in the structural proteins (nucleocapsid, membrane, spike, and small envelope proteins) and hypothetical proteins (SARS3a, 3b, 6, 7a, and 9b) that are specific for SARS-CoV. A peptide chip platform was created and the profiles of antibodies to these epitopes were investigated in 59 different SARS patients' sera obtained 6-103 days after the onset of the illness. Serial sera from five additional patients were also studied.
Results: Epitopes at the N-terminus of the membrane protein and the C-terminus of nucleocapsid protein elicited strong antibody responses. Epitopes on the spike protein were only moderately immunogenic but the effects were persistent. Antibodies were also detected for some putative proteins, noticeably the C-termini of SARS3a and SARS6.
Conclusions: Important epitopes of the SARS-CoV genome that may serve as potential markers for the viral infection are identified. These specific antigenic sites may also be important for vaccine development against this new fatal infectious disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1860290 | PMC |
http://dx.doi.org/10.1136/jcp.2005.029868 | DOI Listing |
NPJ Vaccines
January 2025
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
Cyclic peptides are often used as scaffolds for the multivalent presentation of drug molecules due to their structural stability and constrained conformation. We identified a cyclic deca-peptide incorporating lipoamino acids for delivering T helper and B cell epitopes against group A Streptococcus (GAS), eliciting robust humoral immune responses. In this study, we assessed the function-immunogenicity relationship of the multi-component vaccine candidate (referred to as VC-13) to elucidate a mechanism of action.
View Article and Find Full Text PDFJ Struct Biol
January 2025
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China. Electronic address:
Cryptosporidium has gained much attention as a major cause of diarrhea worldwide. Here, we present the first structure of H-2K complexed with a decapeptide from Cryptosporidium parvum Gp40/15 protein (Gp40/15-VTF10). In contrast to all published structures, the aromatic residue P3-Phe of Gp40/15-VTF10 is anchored in pocket C rather than the canonical Y/F at P5 or P6 reported for octapeptides and nonapeptides.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN. Electronic address:
Background: Human monoclonal IgE antibodies recognizing peanut allergens have recently become available, but we lack a detailed understanding of how these IgEs target allergens.
Objective: To determine the molecular details of the antibody-allergen interaction for a panel of clinically important human IgE monoclonal antibodies and to develop strategies to disrupt disease causing antibody-allergen interactions.
Methods: We identified candidates from a panel of epitope binned human IgE monoclonals that recognize two important and homologous peanut allergens, Ara h 2 and Ara h 6.
Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!