Comparison of a CCD and a flat-panel digital system in an Interventional Cardiology Laboratory.

Radiat Prot Dosimetry

Medical Physics Department, Konstantopoulio Agia Olga Hospital, 3-5 Agias Olgas, Nea Ionia, 14233 Athens, Greece.

Published: June 2006

We evaluated the performances of angiographic units equipped with a flat-panel (FP) detector and image intensifier (II) charge-coupled device (CCD) in the Interventional Cardiology (IC) Department. Entrance dose rate and dose per image, along with the dose at the II level were measured using 2 mm copper sheets to simulate a patient. Image quality (IQ) was evaluated using a phantom. Doses increased with fluoroscopy level changing from low to high. FP presented higher doses than CCD. Periodic measurements showed differences of up to 35%. Low mode IQ did not significantly differ from normal and high mode for both systems. Low fluoroscopy mode was decided to be used routinely. Both X-ray systems performed within international recommendations for conventional systems with the exception of higher cine radiation doses and II dose rates, stressing the fact that more studies are required to investigate whether dose levels should be adjusted.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/nci746DOI Listing

Publication Analysis

Top Keywords

interventional cardiology
8
dose
5
comparison ccd
4
ccd flat-panel
4
flat-panel digital
4
digital system
4
system interventional
4
cardiology laboratory
4
laboratory evaluated
4
evaluated performances
4

Similar Publications

Background: Prior investigations of the center-specific case volume on outcomes in hypoplastic left heart syndrome have conflicting results. This study utilized the National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) registry to investigate the center volume-outcome relationship in patients following the Norwood procedure with consideration of pre-operative high-risk features.

Methods: Between 2016 and 2023, centers were categorized by Norwood procedure volume into low (≤ 5 cases/year), medium (6 to 10 cases/year), and high-volume centers (> 10 cases/year).

View Article and Find Full Text PDF

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Mixed reality for preoperative planning and intraoperative assistance of surgical correction of complex congenital heart defects.

J Thorac Cardiovasc Surg

January 2025

Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.

Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).

Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.

View Article and Find Full Text PDF

Background And Rationale: In-stent restenosis (ISR) remains the leading cause of treatment failure following percutaneous coronary intervention (PCI) with contemporary drug-eluting stents. Especially in small caliber coronary arteries, restenosis is common following PCI and represents a treatment challenge. Drug-coated balloons (DCB) are an attractive alternative to stents for treatment of both ISR and small vessel disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!