ANS fluorescence detects widespread perturbations of protein tertiary structure in ice.

Biophys J

Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 56124 Pisa, Italy.

Published: May 2006

Freeze-induced perturbations of the protein native fold are poorly understood owing to the difficulty of monitoring their structure in ice. Here, we report that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a general monitor of ice-induced alterations of their tertiary structure. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa and mutants I7S, F110S, and C3A/C26A correlate the magnitude of the ice-induced perturbation, as inferred from the extent of ANS binding, to the plasticity of the globular fold, increasing with less stable globular folds as well as when the flexibility of the macromolecule is enhanced. The distortion of the native structure inferred from ANS binding was found to draw a parallel with the extent of irreversible denaturation by freeze-thawing, suggesting that these altered conformations play a direct role on freeze damage. ANS binding experiments, extended to a set of proteins including serum albumin, alpha-amylase, beta-galactosidase, alcohol dehydrogenase from horse liver, alcohol dehydrogenase from yeast, lactic dehydrogenase, and aldolase, confirmed that a stressed condition of the native fold in the frozen state appears to be general to most proteins and pointed out that oligomers tend to be more labile than monomers presumably because the globular fold can be further destabilized by subunit dissociation. The results of this study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1432122PMC
http://dx.doi.org/10.1529/biophysj.105.074948DOI Listing

Publication Analysis

Top Keywords

ans binding
16
perturbations protein
8
tertiary structure
8
structure ice
8
native fold
8
globular fold
8
alcohol dehydrogenase
8
ans
6
binding
5
ans fluorescence
4

Similar Publications

Glycation and aggregation of proteins have garnered more interest in recent years. Glycation leads to the formation of protein aggregates and advanced glycation ends (AGEs) that play crucial roles within several pathological conditions. The objective of our study is to gain a deeper understanding of the formation of AGEs and aggregates of human serum albumin (HSA) in the presence of methylglyoxal and the protective effects of the phytochemical berberine.

View Article and Find Full Text PDF

We describe the novel occurrence of a adenocarcinoma involving the trachea, with distinct solid and glandular components, in a 34-year-old patient. We illustrate its morphological and immunophenotypic features and describe the molecular finding of an EWSR1::BEND2 gene fusion detected by next-generation sequencing (NGS). We discuss the findings in comparison to BEND2-fusion associated neoplasms reported in the head and neck region in the literature to date.

View Article and Find Full Text PDF

Pitfalls of Using ANS Dye Under Molecular Crowding Conditions.

Int J Mol Sci

December 2024

Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.

The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS.

View Article and Find Full Text PDF

The Molecular Mechanism Regulating Flavonoid Production in Pall. Against UV-B Damage Is Mediated by .

Int J Mol Sci

December 2024

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids.

View Article and Find Full Text PDF

Liver failure is the 12th leading cause of death worldwide. Protein-bound toxins such as bilirubin are responsible for many complications of the disease. Binder dialysis systems use albumin or another binding molecule in dialysate and detoxifying sorbent columns to remove these toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!