Background: Divalent cations are required for many essential functions of mitochondrial metabolism. Yet the transporters that mediate the flux of these molecules into and out of the mitochondrion remain largely unknown. Previous studies in yeast have led to the molecular identification of a component of the major mitochondrial electrophoretic Mg2+ uptake system in this organism as well as a functional mammalian homolog. Other yeast mitochondrial studies have led to the characterization of an equilibrative fatty acid-stimulated Ca2+ transport activity. To gain a deeper understanding of the regulation of mitochondrial divalent cation levels we further characterized the efflux of Ca2+ and Mg2+ from yeast mitochondria.
Results: When isolated mitochondria from the yeast Saccharomyces cerevisiae were suspended in a salt-based suspension medium, Ca2+ and Mg2+ were released from the matrix space. Release did not spontaneously occur in a non-ionic mannitol media. When energized mitochondria were suspended in a mannitol medium in the presence of Ca2+ they were able to accumulate Ca2+ by the addition of the electrogenic Ca2+ ionophore ETH-129. However, in a KCl or choline Cl medium under the same conditions, they were unable to retain the Ca2+ that was taken up due to the activation of the Ca2+ efflux pathway, although a substantial membrane potential driving Ca2+ uptake was maintained. This Ca2+ efflux was independent of fatty acids, which have previously been shown to activate Ca2+ transport. Endogenous mitochondrial Mg2+ was also released when mitochondria were suspended in an ionic medium, but was retained in mitochondria upon fatty acid addition. When suspended in a mannitol medium, metal chelators released mitochondrial Mg2+, supporting the existence of an external divalent cation-binding site regulating release. Matrix space Mg2+ was also slowly released from mitochondria by the addition of Ca2+, respiratory substrates, increasing pH, or the nucleotides ATP, ADP, GTP, and ATP-gamma-S.
Conclusion: In isolated yeast mitochondria Ca2+ and Mg2+ release was activated by increased ionic strength. Free nucleotides, metal ion chelators, and increased pH also stimulated release. In yeast cells this release is likely an important mechanism in the regulation of mitochondrial matrix space divalent cation concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1386685 | PMC |
http://dx.doi.org/10.1186/1471-2091-7-4 | DOI Listing |
Sci Rep
January 2025
Ordos Institute of Liaoning Technical University, Liaoning Technical University, Ordos, 017000, China.
This study focuses on the construction and interpretation of a mine water inrush source identification model to enhance the precision and credibility of the model. For water inrush source identification and feature analysis, a novel method combining XGBoost and SHAP is suggested. The model uses Ca, Mg, K + Na, HCO, Cl, SO, Hardness, and pH as discriminators, and the key parameters in the XGBoost model are optimized by introducing the improved sparrow search algorithm.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography, University of Sindh, Jamshoro, Sindh, Pakistan.
This study applied integrated statistical approaches, including GIS mapping and the water quality index (WQI), to assess the quality of water, soil, and plant samples which collected from Darawat Dam, Sindh, Pakistan. The samples were analyzed for physicochemical parameters and metal analyses. Results of cations in water samples were in the range Na 26.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
Lake Victoria is a well-known hot spot for intestinal schistosomiasis, caused by infection with the trematode Schistosoma mansoni. The snail intermediate hosts of this parasite are Biomphalaria snails, with Biomphalaria choanomphala being the predominant intermediate host within Lake Victoria. The prevalence of S.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).
View Article and Find Full Text PDFAquat Toxicol
December 2024
School of Life Science, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, 402660, China. Electronic address:
Tetrachlorantraniliprole (TCTP) is a novel bisamide insecticide and widely used to protect against lepidopteran insect species. However, the application of TCTP in rice fields often leads to water pollution, posing threats to aquatic organisms and potentially to human health. Few studies have assessed the toxic effects of TCTP on aquatic animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!