Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic diversity and population genetic structure of Excoecaria agallocha, a typical mangrove associate species,were surveyed at divergent habitats (intertidal and inland). In general, intertidal populations had higher genetic diversity than inland populations. Genetic differentiation among intertidal populations (G(ST) = 0.191) were smaller than that among inland populations (G(ST) = 0.218), suggesting that gene flow via seed among intertidal populations were stronger. In an analysis of molecular variance (AMOVA), we found that 15.13% of the genetic variance could be explained by the differentiation between habitats, as compared to only 11.63% to geographical effects among five sits 181 -759 km distant from each other. This implies that markedly selection regimes result in habitat adaptation. Isolation-by-distance, Southwest Monsoon Current,China Coastal Current and genetic drift played important role in genetic differentiation of China population of Excoecaria agalocha.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!