Glucose stimulates the exocytosis of insulin secretory granules of pancreatic beta cells. Granule stores are quickly refilled by activation of posttranscriptional mechanisms that enhance the biosynthesis of granule components. Rapid replacement of granules is important to sustain insulin secretion, since new granules appear to be preferentially released. Posttranscriptional regulation of granule biogenesis includes the glucose-induced nucleocytoplasmic translocation of polypyrimidine tract binding protein 1 (PTB1), which binds mRNAs encoding granule proteins, and thus promotes their stabilization and translation. Glucagon-like peptide 1 (GLP-1) potentiates glucose-stimulated insulin gene expression and secretion by increasing cAMP levels in beta cells. Here, we show that elevation of cAMP levels causes the protein kinase A-dependent phosphorylation and nucleocytoplasmic translocation of PTB1, thereby preventing the rapid degradation of insulin mRNA and enhancing the expression of various granule proteins. Taken together, these findings identify PTB1 as a common downstream target of glucose and GLP-1 for the posttranscriptional upregulation of granule biogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2005.12.008DOI Listing

Publication Analysis

Top Keywords

granule proteins
12
beta cells
12
insulin secretory
8
granule biogenesis
8
nucleocytoplasmic translocation
8
camp levels
8
granule
7
insulin
5
camp-dependent phosphorylation
4
ptb1
4

Similar Publications

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Introduction: Esophageal squamous cell carcinoma (ESCC) has one of the poorest cancer prognosis rates; there is an urgent need to develop new drug therapies and biomarkers. CD63, a tetraspanin protein and well-known exosomal marker, is implicated in cancer progression; however, the significance of CD63 expression in ESCC remains unclear. Herein, we report the significance of CD63 expression by analyzing ESCC patient samples and ESCC cell lines.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Neutrophil elastase () mutations are the most common cause of cyclic (CyN) and congenital neutropenia (SCN), two autosomal dominant disorders causing recurrent infections due to impaired neutrophil production. Granulocyte colony-stimulating factor (G-CSF) corrects neutropenia but has adverse effects, including bone pain and in some cases, an increased risk of myelodysplasia (MDS) and acute myeloid leukemia (AML). Hematopoietic stem cell transplantation is an alternative but is limited by its complications and donor availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!