Purpose: To evaluate the accuracy of previously reported superposition/convolution (SC) dosimetric results by comparing with Monte Carlo (MC) dose calculations for head-and-neck intensity-modulated radiation therapy (IMRT) patients treated with the simultaneous integrated boost technique.
Methods And Materials: Thirty-one plans from 24 patients previously treated on a phase I/II head-and-neck squamous cell carcinoma simultaneous integrated boost IMRT protocol were used. Clinical dose distributions, computed with an SC algorithm, were recomputed using an EGS4-based MC algorithm. Phantom-based dosimetry quantified the fluence prediction accuracy of each algorithm. Dose-volume indices were used to compare patient dose distributions.
Results And Discussion: The MC algorithm predicts flat-phantom measurements better than the SC algorithm. Average patient dose indices agreed within 2.5% of the local dose for targets; 5.0% for parotids; and 1.9% for cord and brainstem. However, only 1 of 31 plans agreed within 3% for all indices; 4 of 31 agreed within 5%. In terms of the prescription dose, 4 of 31 plans agreed within 3% for all indices, whereas 28 of 31 agreed within 5%.
Conclusions: Average SC-computed doses agreed with MC results in the patient geometry; however deviations >5% were common. The fluence modulation prediction is likely the major source of the dose discrepancy. The observed dose deviations can impact dose escalation protocols, because they would result in shifting patients to higher dose levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2005.09.049 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFAm J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
J Nurs Adm
December 2024
Author Affiliations: Assistant Professor (Dr Prothero) and Nurse (Sorhus and Huefner), College of Nursing, Brigham Young University, Provo, Utah.
Objective: This study explored nurse leaders' perspectives and experiences in supporting nurses following a serious medical error.
Background: Appropriate support is crucial for nurses following an error. Authentic leadership provides an environment of psychological safety and establishes a patient safety culture.
Proc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!