The microscopic algae in the oceans are crucial food for filter feeding bivalve shellfish (oysters, mussels, scallops, clams, etc.) as well as for the larvae of commercially important crustaceans. Some species of microalgae have the capacity to produce potent toxins, such as saxitoxins and ciguatoxins, which may intoxicate humans. Among the marine phytoplankton, the dinoflagellates are the main toxin producers. Studies on the marine phytoplankton from the São Sebastião Channel, southeastern coast of Brazil, showed a great diversity of dinoflagellates. Some species were collected and cultured at the Marine Biology Center of the São Paulo University (USP). The polar (PEs) (aqueous) and apolar (AEs) (methylene chloride) extracts of the cultivated dinoflagellate species were tested on different stages of the sea urchin development, on mouse erythrocytes and on microfilaments organization in a neuroblastoma cell line. Prorocentrum mexicanum PE and AE induced cells anomalies and cell division inhibition of sea urchin eggs at EC50 of 78.75 microg/mL (95% CI from 32.56 to 190.50) and 22.50 microg/mL (95% CI from 2.96 to 170.80) respectively (n=3). Both AE and PE of P. mexicanum induced hemolysis with EC50 of 65.07 microg/mL (95% CI from 27.40 to 154.60) and 84.29 microg/mL (95% CI from 53.26 to 133.40 microg/mL), respectively. P. mexicanum PE was tested in immunofluorescence for actin filaments organization in neuroblastoma cultured cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2005.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!