Background: Dendritic cells (DCs) utilize Toll-like receptors (TLRs) to sense virus and initiate immune responses. We aimed at elucidating the roles of TLRs on DCs in hepatitis C virus (HCV) infection.
Methods: Monocyte-derived DCs were obtained from 32 healthy volunteers (HV) and 30 chronically HCV-infected patients (CH). TLR2, TLR3 and TLR4 expressions on immature DCs were quantified by real-time quantitative RT-PCR. We stimulated DCs with specific TLR ligands and examined DC maturation, cytokine production and ability to stimulate allogeneic CD4(+) T cells.
Results: TLR2 expression on immature DCs was lower in the CH group, whereas those of TLR3 or TLR4 were not different between the groups. Each TLR ligand induced DC maturation and stimulated them to release comparable levels of IL-12p70, IL-6, IL-10, TNF-alpha and IFN-beta between the groups. TLR2 and TLR4 ligands enhanced DC ability to stimulate T cell proliferation, with the degree due to the TLR2 ligand being lower in the CH group.
Conclusions: In HCV infection, the TLR2 expression on DCs is reduced and TLR2-stimulated DCs show lesser ability to proliferate T cells than healthy counterparts, suggesting that the TLR2 system is involved in HCV-induced immunopathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hepres.2005.12.010 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.
Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Biology, College of Science, Sultan Qaboos University, Muscat, 123, Oman.
Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.
View Article and Find Full Text PDFFront Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFFront Immunol
December 2024
School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Thyroid-associated orbitopathy (TAO) is an autoimmune inflammatory disorder of the orbital adipose tissue, primarily causing oxidative stress injury and tissue remodeling in the orbital connective tissue. Ferroptosis is a form of programmed cell death driven by the accumulation of reactive oxygen species (ROS), iron metabolism disorder, and lipid peroxidation. This study aims to identify and validate the optimal feature genes (OFGs) of ferroptosis with diagnostic and therapeutic potential in TAO orbital adipose tissue through bioinformatics analysis and to assess their correlation with disease-related immune cell infiltration.
View Article and Find Full Text PDFJ Natl Cancer Cent
December 2024
Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
Background: Tumor-derived exosomes are involved in tumor progression and immune invasion and might function as promising noninvasive approaches for clinical management. However, there are few reports on exosom-based markers for predicting the progression and adjuvant therapy response rate among patients with clear cell renal cell carcinoma (ccRCC).
Methods: The signatures differentially expressed in exosomes from tumor and normal tissues from ccRCC patients were correspondingly deregulated in ccRCC tissues.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!