A series of 2-amino-9-aryl-7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to target focal adhesion kinase (FAK). A number of these pyrrolopyrimides exhibited low micromolar inhibitory activities against focal adhesion kinase, and their preliminary SAR was established via systematic chemical modifications. The 2-amino-9-aryl-7H-pyrrolo[2,3-d]pyrimidines represent a new class of kinase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2006.01.053DOI Listing

Publication Analysis

Top Keywords

focal adhesion
12
adhesion kinase
12
kinase inhibitors
8
design synthesis
4
synthesis 7h-pyrrolo[23-d]pyrimidines
4
7h-pyrrolo[23-d]pyrimidines focal
4
kinase
4
inhibitors series
4
series 2-amino-9-aryl-7h-pyrrolo[23-d]pyrimidines
4
2-amino-9-aryl-7h-pyrrolo[23-d]pyrimidines designed
4

Similar Publications

The quantity of cable conductors is a crucial parameter in cable manufacturing, and accurately detecting the number of conductors can effectively promote the digital transformation of the cable manufacturing industry. Challenges such as high density, adhesion, and knife mark interference in cable conductor images make intelligent detection of conductor quantity particularly difficult. To address these challenges, this study proposes the YOLO-cable model, which is an improvement made upon the YOLOv10 model.

View Article and Find Full Text PDF

Objective: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA.

View Article and Find Full Text PDF

LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases.

Pathol Res Pract

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India. Electronic address:

Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases.

View Article and Find Full Text PDF

The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!