Beech seedlings were grown under different nitrogen fertilisation regimes (0, 20, 40, and 80 kg Nha(-1)yr(-1)) for three years and were fumigated with either charcoal-filtered (F) or ambient air (O3). Nitrogen fertilisation increased leaf necroses, aphid infestations, and nutrient ratios in the leaves (N:P and N:K), as a result of decreased phosphorus and potassium concentrations. For plant growth, biomass accumulation, and starch concentrations, a positive nitrogen effect was found, but only for fertilisations of up to 40 kg Nha(-1) yr(-1). The highest nitrogen load, however, reduced leaf area, leaf water content, growth, biomass accumulation, and starch concentrations, whereas soluble carbohydrate concentrations were enhanced. The ozone fumigation resulted in reduced leaf area, leaf water content, shoot growth, root biomass accumulation, and decreased starch, phosphorus, and potassium concentrations, increasing the N:P and N:K ratios. A combined effect of the two pollutants was detected for the leaf area and the shoot elongation, where ozone fumigation amplified the nitrogen effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2005.11.036 | DOI Listing |
Photosynthetica
January 2025
College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China.
Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil.
Increasing nitrogen use efficiency (NUE) remains a crucial topic in contemporary agriculture. Inoculation with endophytic diazotrophic bacteria offers a potential solution, but the results vary with the N-fertilization regime. Here, we examined the efficacy of inoculation with Herbaspirillum seropedicae strain HRC54 in enhancing NUE and promoting the growth of Marandu palisadegrass with varying levels of N-urea (0, 25, 50, and 100 mg N kg soil⁻).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China. Electronic address:
Biocrusts are the primary organic carbon reservoirs in desert areas, in which inorganic clays potentially playing significant roles; however, the specific details of these roles remain largely unclear. In this study, typical 1:1 type (kaolin) and 2:1 type (montmorillonite, MMT) clay minerals were added to artificial biocrusts to investigate their effect on the acquisition performance of soil organic carbon (SOC). After 84 days of cultivation, the enhancement effects of kaolin and MMT were significant, resulting in SOC increments that were 5.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia.
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!