In this study isotopic dilution methods were used to investigate the hypothesis that access to metals associated with specific chemical components in the soil that are not available to non-accumulator species could be involved in hyperaccumulation. The hyperaccumulator Thlaspi caerulescens and a non-accumulator species, Brassica napus, were grown in Cd and Zn enriched soil components calcite, goethite, charcoal and cryptomelane. The metal enriched components were aged to allow transformation of a proportion of added metals to non-labile forms. Results from the isotopic dilution L value method showed that despite taking up more metals, T. caerulescens accessed the same pool of metals as B. napus. Hence differential access to different solid-phase pools of metals appears to be an unlikely mechanism underlying metal hyperaccumulation. For all components except charcoal, L values for Cd and Zn were greater than the corresponding E values suggesting that E values may tend to underestimate the bioavailable fraction of metals in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2005.12.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!