Glass-fiber disks provide suitable medium to study polyol production and gene expression in Eurotium rubrum.

Mycologia

Department of Botany & Plant Pathology, Purdue University, 915 State Street, West Lafayette, Indiana 47907-2054, USA.

Published: March 2006

Eurotium species often dominate the fungal population in stored grain and are responsible for spoilage. In this study we tested the usefulness of glass fiber disks to aid the analysis of growth, polyol content and gene expression in E. rubrum in response to various water activities. Growth measurements based on ergosterol content and conidial production indicated that E. rubrum grew as well at 0.86 aw as 0.98 aw. The rate of growth was considerably reduced at 0.83 aw and 0.78 aw. In contrast, under our conditions, Aspergillus flavus and A. nidulans were able to grow only in the highest water activity (0.98 aw). Mannitol was the predominant polyol in all three fungal species grown at 0.98 aw. When E. rubrum was grown at 0.86 aw or lower, glycerol comprised greater than 90% of the total polyols. After a shift from 0.86 aw to 0.98 aw, mannitol levels in E. rubrum increased to 89% of the total polyols within 24 h. Of six genes whose expression was measured by quantitative real-time PCR, three were affected by water activity. Expression of putative hydrophobin and mannitol dehydrogenase genes was higher at 0.98 aw than at 0.86 aw. A putative triacylglycerol lipase gene was expressed at higher levels in 0.86 aw.. The results of this study indicate that the disk method is suitable to study the effects of water activity on growth, polyol biosynthesis and gene expression in E. rubrum. The results also indicate the potential competitiveness of E. rubrum over A. flavus and A. nidulans in low water environments associated with stored grain.

Download full-text PDF

Source
http://dx.doi.org/10.3852/mycologia.97.4.743DOI Listing

Publication Analysis

Top Keywords

gene expression
12
water activity
12
stored grain
8
growth polyol
8
expression rubrum
8
086 098
8
flavus nidulans
8
098 mannitol
8
total polyols
8
rubrum
7

Similar Publications

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!