Mutant huntingtin represses CBP, but not p300, by binding and protein degradation.

Mol Cell Neurosci

CBG-Center of Human and Clinical Genetics, Leiden University Medical Center, The Netherlands, and Department of Neurology, The second affiliated hospital of China Medical University, Shenyang, China.

Published: December 2005

Huntington's disease can be used as a model to study neurodegenerative disorders caused by aggregation-prone proteins. It has been proposed that the entrapment of transcription factors in aggregates plays an important role in pathogenesis. We now report that the transcriptional activity of CBP is already repressed in the early time points by soluble mutant huntingtin, whereas the histone acetylase activity of CBP/p300 is gradually diminished over time. Mutant huntingtin bound much stronger to CBP than normal huntingtin, possibly contributing to repression. Especially at the later time points, CBP protein level was gradually reduced via the proteasome pathway. In sharp contrast, p300 was unaffected by mutant huntingtin. This selective degradation of CBP was absent in spinocerebellar ataxia 3. Thus, mutant huntingtin specifically affects CBP and not p300 both at the early and later time points, via multiple mechanisms. In addition to the reduction of CBP, also the altered ratio of these closely related histone acetyl transferases may affect chromatin structure and transcription and thus contribute to neurodegeneration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mutant huntingtin
20
time points
12
cbp p300
8
early time
8
cbp
7
mutant
5
huntingtin
5
huntingtin represses
4
represses cbp
4
p300 binding
4

Similar Publications

Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.

View Article and Find Full Text PDF

Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.

View Article and Find Full Text PDF

The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.

View Article and Find Full Text PDF

Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!