Because modulation of P-glycoprotein (Pgp) through inhibition or induction can lead to drug-drug interactions by altering intestinal, central nervous system, renal, or biliary efflux, it is anticipated that information regarding the potential interaction of drug candidates with Pgp will be a future regulatory expectation. Therefore, to be able to utilize in vitro Pgp inhibition findings to guide clinical drug interaction studies, the utility of five probe substrates (calcein-AM, colchicine, digoxin, prazosin, and vinblastine) was evaluated by inhibiting their Pgp-mediated transport across multidrug resistance-1-transfected Madin-Darby canine kidney cell type II monolayers with 20 diverse drugs having various degrees of Pgp interaction (e.g., efflux ratio, ATPase, and calcein-AM inhibition). Overall, the rank order of inhibition was generally similar with IC(50) values typically within 3- to 5-fold of each other. However, several notable differences in the IC(50) values were observed. Digoxin and prazosin were the most sensitive probes (e.g., lowest IC(50) values), followed by colchicine, vinblastine, and calcein-AM. Inclusion of other considerations such as a large dynamic range, commercially available radiolabel, and a clinically meaningful probe makes digoxin an attractive probe substrate. Therefore, it is recommended that digoxin be considered as the standard in vitro probe to investigate the inhibition profiles of new drug candidates. Furthermore, this study shows that it may not be necessary to generate IC(50) values with multiple probe substrates for Pgp as is currently done for cytochrome P450 3A4. Finally, a strategy integrating results from in vitro assays (efflux, inhibition, and ATPase) is provided to further guide clinical interaction studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.105.008615 | DOI Listing |
ScientificWorldJournal
January 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen.
Ethnomedicine exhibits potential in developing affordable effective antidiabetic agents. This work aimed to explore the antidiabetic properties of latex extract both in vivo, utilizing alloxan-induced diabetic rats, and in vitro, through -amylase enzyme testing. Additionally, it sought to formulate optimal effervescent granules derived from the extract.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Material Science and Engineering, Nanjing Tech University P. R China.
Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).
View Article and Find Full Text PDFInvest New Drugs
January 2025
Dipartimento Di Ricerca Traslazionale E Delle Nuove Tecnologie in Medicina E Chirurgia, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy.
Cutaneous T-cell lymphomas (CTCLs) are a rare and heterogeneous subset of skin-localized, non-Hodgkin lymphomas. Our aim was to evaluate the in vitro antitumor activity of the multi-kinase inhibitor linifanib, either alone or in combination with metronomic vinorelbine (mVNR) or etoposide (mETO), on CTCL cells. In vitro proliferation assay and Luminex analysis showed that long-term, daily exposure of linifanib significantly inhibited the proliferation of the human CTCL cell line HH, in a concentration-dependent manner (IC = 48.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Health Sciences, University of Basilicata, Potenza, Italy.
Alzheimer's disease is a neurodegenerative chronic disease with a severe social and economic impact in the societies, which still lacks an efficient therapy. Several pathophysiological events (β-amyloid [Aβ] deposits, τ-protein aggregation, loss of cholinergic activity, and oxidative stress) occurs in the progression of the disease. Therefore, the search for efficient multi-targeted agents for the treatment of Alzheimer's disease becomes indispensable.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Bioprinting Laboratories Inc., Dallas, Texas, USA.
Recent advancements in three-dimensional (3D) cell culture technologies, such as cell spheroids, organoids, and 3D bioprinted tissue constructs, have significantly improved the physiological relevance of in vitro models. These models better mimic tissue structure and function, closely emulating in vivo characteristics and enhancing phenotypic analysis, critical for basic research and drug screening in personalized cancer therapy. Despite their potential, current 3D cell culture platforms face technical challenges, which include user-unfriendliness in long-term dynamic cell culture, incompatibility with rapid cell encapsulation in biomimetic hydrogels, and low throughput for compound screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!