The intracerebroventricular injection of endothelin-1 (ET-1) induces fever and increases PG levels in the cerebrospinal fluid of rats. Likewise, the injection of IL-1 into the preoptic area (POA) of the rat hypothalamus causes both fever and increased PG production. In this study, we conducted in vivo and in vitro experiments in the rat to investigate 1) the hypothalamic region involved in ET-1-induced fever and PG biosynthesis and 2) whether hypothalamic IL-1 plays a role as a mediator of the above ET-1 activities. One hundred femtomoles of ET-1 increased body temperature when injected in the POA of conscious Wistar rats; this effect was significantly counteracted by the coinjection of 600 pmol IL-1 receptor antagonist (IL-1ra). In experiments on rat hypothalamic explants, 100 nM ET-1 caused a significant increase in PGE2 production and release from the whole hypothalamus and from the isolated POA, but not from the retrochiasmatic region, in 1-h incubations. Six nanomoles of IL-1ra or 10 nM of a cell-permeable interleukin-1 converting enzyme inhibitor completely counteracted the effect of ET-1 on PGE2 release from the POA. One hundred nanomoles ET-1 also caused a significant increase in IL-1beta immunoreactivity released into the bath solution of hypothalamic explants after 1 h of incubation, although during such time ET-1 failed to modify the gene expression of IL-1beta and other pyrogenic cytokines within the hypothalamus. In conclusion, our results show that ET-1 increases IL-1 production in the POA, and this effect appears to be correlated to ET-1-induced fever in vivo, as well as to PG production in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00604.2005DOI Listing

Publication Analysis

Top Keywords

preoptic area
8
et-1
8
experiments rat
8
et-1-induced fever
8
hypothalamic explants
8
et-1 caused
8
caused increase
8
fever
5
production
5
poa
5

Similar Publications

Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

Microorganisms

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.

View Article and Find Full Text PDF

Undernutrition has increased worldwide in recent years and it is known that environmental factors to which individuals are exposed in early life can result in metabolic and reproductive changes that remain in adult life. In this context, the litter size expansion is a classic model used to induce undernutrition early in development. Thus, this study aimed to evaluate the effects of neonatal undernutrition induced by the litter size expansion on metabolic and reproductive parameters of female rats.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the potential effects of different doses of essential oil (Lavender EO) administered by inhalation on sleep latency and neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation (TSD).

Materials And Methods: Forty-eight male Sprague-Dawley rats were divided into five groups: Control, Alprazolam (ALP, 0.25 mg/kg given intraperitoneally), L1 (Lavender EO, 0.

View Article and Find Full Text PDF

Identification of hypothermia-inducing neurons in the preoptic area and activation of them by isoflurane anesthesia and central injection of adenosine.

J Physiol Sci

January 2025

Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, 890-8544, Kagoshima, Japan. Electronic address:

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons.

View Article and Find Full Text PDF

Dominance and aggressiveness are associated with vasotocin neuron numbers in a cooperatively breeding cichlid fish.

Horm Behav

January 2025

School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. Electronic address:

Within dominance hierarchies, individuals must interact in a rank-appropriate manner, thus behavior and its underlying neural mechanisms must change with social status. One such potential neural mechanism is arginine vasotocin (AVT), a nonapeptide which has been implicated in the regulation of dominance and aggression across vertebrate taxa. We investigated the relationship between social status, dominance-related behaviors, and vasotocin neuron counts in daffodil cichlids (Neolamprologus pulcher).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!