Environmental exposure to cadmium and risk of cancer: a prospective population-based study.

Lancet Oncol

Study Coordinating Centre, Hypertension and Cardiovascular Rehabilitation Unit, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium.

Published: February 2006

Background: Cadmium is a ubiquitous environmental pollutant, which accumulates in the human body such that 24-h urinary excretion is a biomarker of lifetime exposure. We aimed to assess the association between environmental exposure to cadmium and cancer.

Methods: We recruited a random population sample (n=994) from an area close to three zinc smelters and a reference population from an area with low exposure to cadmium. At baseline (1985-89), we measured cadmium in urine samples obtained over 24 h and in the soil of participants' gardens, and followed the incidence of cancer until June 30, 2004. We used Cox regression to calculate hazard ratios for cancer in relation to internal (ie, urinary) and external (ie, soil) exposure to cadmium, while adjusting for covariables.

Findings: Cadmium concentration in soil ranged from 0.8 mg/kg to 17.0 mg/kg. At baseline, geometric mean urinary cadmium excretion was 12.3 nmol/day for people in the high-exposure area, compared with 7.7 nmol/day for those in the reference (ie, low-exposure) area (p<0.0001). During follow-up (median 17.2 years [range 0.6-18.8]), 50 fatal cancers and 20 non-fatal cancers occurred, of which 18 and one, respectively, were lung cancers. Overall cancer risk was significantly associated with a doubling of 24-h cadmium excretion (hazard ratio 1.31 [95% CI 1.03-1.65], p=0.026. Population-attributable risk of lung cancer was 67% (95% CI 33-101) in the high-exposure area, compared with that of 73% (38-108) for smoking. For lung cancer, adjusted hazard ratio was 1.70 (1.13-2.57, p=0.011) for a doubling of 24-h urinary cadmium excretion, 4.17 (1.21-14.4, p=0.024) for residence in the high-exposure area versus the low-exposure area, and 1.57 (1.11-2.24, p=0.012) for a doubling of cadmium concentration in soil.

Interpretation: Historical pollution from non-ferrous smelters continues to present a serious health hazard, necessitating targeted preventive measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1470-2045(06)70545-9DOI Listing

Publication Analysis

Top Keywords

exposure cadmium
16
environmental exposure
8
cadmium
8
cadmium risk
4
risk cancer
4
cancer prospective
4
prospective population-based
4
population-based study
4
study background
4
background cadmium
4

Similar Publications

Cadmium (Cd) is a silvery-white and shiny heavy metal that is common in daily life and can adversely affect the development, lifespan, and reproduction of organisms. In this study, Drosophila melanogaster (F) were cultured from eggs to adults in medium containing different Cd concentrations (0, 2.25, and 4.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a globally recognized neurodevelopmental condition characterized by repetitive and restrictive behavior, persistent deficits in social interaction and communication, mental disturbances, etc., affecting approximately 1 in 100 children worldwide. A combination of genetic and environmental factors is involved in the etiopathogenesis of the disease, but specific biomarkers have not yet been identified.

View Article and Find Full Text PDF

Impact of iron oxide nanoparticles on cadmium toxicity mitigation in Brassica napus.

Plant Physiol Biochem

January 2025

Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (FeONPs) in regulating Cd toxicity in oilseed crops.

View Article and Find Full Text PDF

Inhibitory effects of cadmium and hydrophilic cadmium telluride quantum dots on the white rot fungus .

Heliyon

January 2025

Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.

The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).

View Article and Find Full Text PDF

Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!