A vibrational and DFT study of M(diimine)(dithiolate) complexes and their complexation route.

Spectrochim Acta A Mol Biomol Spectrosc

Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece.

Published: July 2006

A complete vibrational spectra analysis of the Pd(phen)(bdt), the free ligands, where phen=1,10-phenanthroline and bdt=1,2-benzenedithiolate and the starting material of its synthesis, Pd(phen)Cl(2), is performed in this paper. The molecular geometry, binding and spectroscopic properties for the aforementioned compounds are studied in detail by FT-IR, Raman and DFT methods using B3LYP functional together with basis sets of valence triple-zeta quality. Further, changes in FT-IR and Raman spectra during complexation are monitored revealing the electron delocalization over ligands. They are also consistent with pi-back donation theory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2005.08.023DOI Listing

Publication Analysis

Top Keywords

ft-ir raman
8
vibrational dft
4
dft study
4
study mdiiminedithiolate
4
mdiiminedithiolate complexes
4
complexes complexation
4
complexation route
4
route complete
4
complete vibrational
4
vibrational spectra
4

Similar Publications

Preparation of a CNF porous membrane and synthesis of silver nanoparticles (AgNPs).

RSC Adv

January 2025

The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.

We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.

View Article and Find Full Text PDF

The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).

View Article and Find Full Text PDF

A sonochemical synthesis of SnS quantum dots using acetone as a solvent is investigated. Two different tin sources (SnCl∙2HO or SnCl∙5HO) as well as two different sulfur sources (thioacetamide or NaSO) were applied. The sonication time was also varied between 60 and 120 min.

View Article and Find Full Text PDF

Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!