cAMP promotes branching of laminin-induced neuronal processes.

J Cell Physiol

Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892.

Published: April 1991

Laminin is a potent stimulator of neurite outgrowth. We have examined the signal transduction events involved in the neuronal cell response to laminin. Cyclic nucleotides, calcium, and sodium-proton exchange do not appear to be required for the transduction of the laminin signal during neurite outgrowth. Direct measurement of cAMP and cGMP levels shows no changes in NG108-15 cells when cultured on laminin. Exogenous cAMP alone had no effect on either the rate of process formation or process length, but did alter the morphology of laminin-induced neurites. A four-fold increase in the number of branches per neurite and a two-to-three-fold increase in the number of neurites per cell were observed in both NG108-15 and PC12 cells cultured on laminin when either 8-BrcAMP or forskolin was added. The cAMP-induced branching was also observed when PC12 cells were cultured on a laminin-derived synthetic peptide (PA22-2), which contains the neurite-promoting amino acid sequence IKVAV. By immunofluorescence analysis with axonal or dendritic markers, the PC12 processes on laminin and PA22-2 were axonal, not dendritic, and the cAMP-induced morphological changes were due to axonal branching. These data demonstrate that changes in cAMP are not involved in laminin-mediated neurite outgrowth, but cAMP can modulate the effects of laminin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.1041470109DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
12
cells cultured
12
processes laminin
8
cultured laminin
8
increase number
8
pc12 cells
8
axonal dendritic
8
laminin
7
camp
5
camp promotes
4

Similar Publications

Bafilomycin A1 mitigates subchondral bone degeneration and pain in TMJOA rats.

Int Immunopharmacol

January 2025

Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China. Electronic address:

Background: Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined.

View Article and Find Full Text PDF

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.

View Article and Find Full Text PDF

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!