Localization and sequence analysis of chloroplast DNA sequences of Chlamydomonas reinhardii that promote autonomous replication in yeast.

EMBO J

Department of Molecular Biology, University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.

Published: February 1984

Four distinct chloroplast DNA segments from Chlamydomonas reinhardii of 400, 415, 730 and 2300 bp which promote autonomous replication in yeast have been mapped on the chloroplast genome. Plasmids carrying these chloroplast DNA fragments are unstable in yeast when the cells are grown under non-selective conditions. Sequence analysis of three of these chloroplast ARS regions (autonomously replicating sequences in yeast) reveals a high AT content, numerous short direct and inverted repeats and the presence of at least one element in each region that is related to the yeast ARS consensus sequence. A/T TTTATPuTTT A/T. These three chloroplast regions share, in addition, two common elements of 10 and 11 bp which may play a role in promoting autonomous replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC557360PMC
http://dx.doi.org/10.1002/j.1460-2075.1984.tb01822.xDOI Listing

Publication Analysis

Top Keywords

chloroplast dna
12
autonomous replication
12
sequence analysis
8
chlamydomonas reinhardii
8
promote autonomous
8
replication yeast
8
three chloroplast
8
chloroplast
6
yeast
5
localization sequence
4

Similar Publications

Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.

View Article and Find Full Text PDF

Cloning a Chloroplast Genome in and .

Bio Protoc

January 2025

Biochemistry Department, Western University, London, Canada.

Chloroplast genomes present an alternative strategy for large-scale engineering of photosynthetic eukaryotes. Prior to our work, the chloroplast genomes of (204 kb) and (140 kb) had been cloned using bacterial and yeast artificial chromosome (BAC/YAC) libraries, respectively. These methods lack design flexibility as they are reliant upon the random capture of genomic fragments during BAC/YAC library creation; additionally, both demonstrated a low efficiency (≤ 10%) for correct assembly of the genome in yeast.

View Article and Find Full Text PDF

Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.

View Article and Find Full Text PDF

is a popular ornamental aquatic plant for aquarists, although only six species are found in China. Destruction of the natural habitats of for human activities has led to a decline in its numbers. In this report, we sequenced and annotated the chloroplast genome for the first time.

View Article and Find Full Text PDF

Mitochondrial genome of : features, RNA editing, and insights into male sterility.

Front Plant Sci

January 2025

Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.

Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!