Distinct, local structures are frequently correlated with functional RNA elements involved in post-transcriptional regulation of gene expression. Discovery of microRNAs (miRNAs) suggests that there are a large class of small non-coding RNAs in eukaryotic genomes. These miRNAs have the potential to form distinct fold-back stem-loop structures. The prediction of those well-ordered folding sequences (WFS) in genomic sequences is very helpful for our understanding of RNA-based gene regulation and the determination of local RNA elements with structure-dependent functions. In this study, we describe a novel method for discovering the local WFS in a nucleotide sequence by Monte Carlo simulation and RNA folding. In the approach the quality of a local WFS is assessed by the energy difference (E(diff)) between the optimal structure folded in the local segment and its corresponding optimal, restrained structure where all the previous base pairings formed in the optimal structure are prohibited. Distinct WFS can be discovered by scanning successive segments along a sequence for evaluating the difference between E(diff) of the natural sequence and those computed from randomly shuffled sequences. Our results indicate that the statistically significant WFS detected in the genomic sequences of Caenorhabditis elegans (C.elegans) F49E12, T07C5, T07D1, T10H9, Y56A3A and Y71G12B are coincident with known fold-back stem-loops found in miRNA precursors. The potential and implications of our method in searching for miRNAs in genomes is discussed.
Download full-text PDF |
Source |
---|
Cell Oncol (Dordr)
January 2025
Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.
Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.
Front Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.
View Article and Find Full Text PDFJ Transl Med
January 2025
Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.
Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).
Microbiome
January 2025
Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
Background: High-throughput sequencing has revolutionized environmental microbiome research, providing both quantitative and qualitative insights into nucleic acid targets in the environment. The resulting microbial composition (community structure) data are essential for environmental analytical microbiology, enabling characterization of community dynamics and assessing microbial pollutants for the development of intervention strategies. However, the relative abundances derived from sequencing impede comparisons across samples and studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!