The small GTPase Rab2 is required for membrane transport between the endoplasmic reticulum (ER) and the Golgi complex. Rab2 associates with pre-Golgi intermediates (also termed vesicular tubular clusters; VTCs) that sort cargo to the anterograde pathway from recycling proteins retrieved to the ER. Our previous studies have shown that Rab2 stimulates atypical protein kinase C iota/lambda (aPKCiota/lambda) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) recruitment to VTCs. Both aPKCiota/lambda and GAPDH bind directly to Rab2 and aPKCiota/lambda and GAPDH interact. Based on the reports demonstrating aPKCiota-Src interaction and Src activity in the retrograde pathway (Golgi-ER), studies were initiated to learn whether Rab2 also promoted Src recruitment to VTCs. Using a quantitative membrane binding assay, we found that Rab2-stimulated Src membrane association in a dose-dependent manner. The recruited Src binds to aPKCiota/lambda and GAPDH on the membrane; however, Src does not interact with Rab2. The membrane-associated Src tyrosine phosphorylates aPKCiota/lambda on the VTC. To determine the consequence of aPKCiota/lambda tyrosine phosphorylation, the membrane binding assay was supplemented with the Src-specific tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP2). Although Rab2, Src, and GAPDH recruitment was not affected, the Rab2-PP2-treated membranes contained a negligible amount of aPKCiota/lambda. Since Rab2 requires aPKCiota/lambda for the downstream recruitment of beta-coat protein (beta-COP) to VTCs, the Rab2-PP2-treated membranes were evaluated for the presence of beta-COP. Like aPKCiota/lambda, the membranes contained a negligible amount of beta-COP that was reflected by the drastic reduction in Rab2-dependent vesicle formation. These data suggest that Src-mediated tyrosine phosphorylation of aPKCiota/lambda facilitates aPKCiota/lambda association with Rab2-Src-GAPDH on VTCs, which is ultimately necessary for the downstream recruitment of beta-COP and release of Rab2-mediated retrograde-directed vesicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742308 | PMC |
http://dx.doi.org/10.1074/jbc.M513031200 | DOI Listing |
J Biol Chem
March 2015
From the Department of Cell and Developmental Biology and
PAR3 suppresses tumor growth and metastasis in vivo and cell invasion through matrix in vitro. We propose that PAR3 organizes and limits multiple signaling pathways and that inappropriate activation of these pathways occurs without PAR3. Silencing Pard3 in conjunction with oncogenic activation promotes invasion and metastasis via constitutive STAT3 activity in mouse models, but the mechanism for this is unknown.
View Article and Find Full Text PDFBiol Open
May 2012
Biotechnology Centre of Oslo, University of Oslo, NO-0349, Oslo , Norway.
The atypical protein kinases C (PKC) isoforms ι and ζ play crucial roles in regulation of signaling pathways related to proliferation, differentiation and cell survival. Over the years several interaction partners and phosphorylation targets have been identified. However, little is known about the regulation of atypical aPKC isoforms.
View Article and Find Full Text PDFJ Invest Dermatol
April 2007
Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
The skin water barrier, essential for terrestrial life, is formed by a multilayered stratifying epithelium, which shows a polarized distribution of both differentiation and intercellular junction markers. Recently, several reports showed the crucial importance of tight junctions for the in vivo water barrier function of the skin. In simple epithelial cells, intercellular junction formation is closely coupled to the establishment of polarity.
View Article and Find Full Text PDFThe small GTPase Rab2 is essential for membrane trafficking in the early secretory pathway. Rab2 associates with vesicular tubular clusters (VTCs) located between the endoplasmic reticulum (ER) and the Golgi complex. VTCs function as transport intermediates and sort anterograde-directed cargo from recycling proteins.
View Article and Find Full Text PDFJ Biol Chem
March 2006
Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
The small GTPase Rab2 is required for membrane transport between the endoplasmic reticulum (ER) and the Golgi complex. Rab2 associates with pre-Golgi intermediates (also termed vesicular tubular clusters; VTCs) that sort cargo to the anterograde pathway from recycling proteins retrieved to the ER. Our previous studies have shown that Rab2 stimulates atypical protein kinase C iota/lambda (aPKCiota/lambda) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) recruitment to VTCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!