A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. | LitMetric

AI Article Synopsis

  • c-Met is a receptor tyrosine kinase activated by hepatocyte growth factor (HGF), which plays a crucial role in cancer processes like cell growth, survival, and metastasis.
  • Researchers developed five fully human monoclonal antibodies that effectively neutralize HGF, blocking its interaction with c-Met and inhibiting tumor-promoting activities.
  • The treatment with these anti-HGF antibodies demonstrated significant tumor regression and increased cancer cell death in mouse models, indicating their potential as new therapies for HGF-dependent tumors.

Article Abstract

c-Met is a well-characterized receptor tyrosine kinase for hepatocyte growth factor (HGF). Compelling evidence from studies in human tumors and both cellular and animal tumor models indicates that signaling through the HGF/c-Met pathway mediates a plethora of normal cellular activities, including proliferation, survival, migration, and invasion, that are at the root of cancer cell dysregulation, tumorigenesis, and tumor metastasis. Inhibiting HGF-mediated signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of human tumors. Toward this goal, we generated and characterized five different fully human monoclonal antibodies that bound to and neutralized human HGF. Antibodies with subnanomolar affinities for HGF blocked binding of human HGF to c-Met and inhibited HGF-mediated c-Met phosphorylation, cell proliferation, survival, and invasion. Using a series of human-mouse chimeric HGF proteins, we showed that the neutralizing antibodies bind to a unique epitope in the beta-chain of human HGF. Importantly, these antibodies inhibited HGF-dependent autocrine-driven tumor growth and caused significant regression of established U-87 MG tumor xenografts. Treatment with anti-HGF antibody rapidly inhibited tumor cell proliferation and significantly increased the proportion of apoptotic U-87 MG tumor cells in vivo. These results suggest that an antibody to an epitope in the beta-chain of HGF has potential as a novel therapeutic agent for treating patients with HGF-dependent tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-3329DOI Listing

Publication Analysis

Top Keywords

hepatocyte growth
12
human tumors
12
human hgf
12
fully human
8
human monoclonal
8
monoclonal antibodies
8
growth factor
8
proliferation survival
8
novel therapeutic
8
treating patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!