A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. | LitMetric

Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes.

Am J Physiol Cell Physiol

Biomechanics and Tissue Engineering Laboratory, The Ohio State Univ., 305 West 12th Ave., Columbus, OH 43210, USA.

Published: June 2006

Fibrochondrocytes of meniscus adapt to changes in their biomechanical environment by mechanisms that are yet to be elucidated. In this study, the mechanoresponsiveness of fibrochondrocytes under normal and inflammatory conditions was investigated. Fibrochondrocytes from rat meniscus were exposed to dynamic tensile forces (DTF) at various magnitudes and frequencies. The mechanoresponsiveness was assessed by examining the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), and matrix metalloproteinase-13 mRNA expression. The mRNA and protein analyses revealed that DTF at magnitudes of 5% to 20% did not induce proinflammatory gene expression. IL-1beta induced a rapid increase in the iNOS mRNA. DTF strongly repressed IL-1beta-dependent iNOS induction in a magnitude-dependent manner. Exposure to 15% DTF resulted in >90% suppression of IL-1beta-induced mRNA within 4 h and this suppression was sustained for the ensuing 20 h. The mechanosensitivity of fibrochondrocytes was also frequency dependent and maximal suppression of iNOS mRNA expression was observed at rapid frequencies of DTF compared with lower frequencies. Like iNOS, DTF also inhibited IL-1beta-induced expression of proinflammatory mediators involved in joint inflammation. The examination of temporal effects of DTF revealed that 4- or 8-h exposure of DTF was sufficient for its sustained anti-inflammatory effects during the next 20 or 16 h, respectively. Our findings indicate that mechanical signals act as potent anti-inflammatory signals, where their magnitude and frequency are critical determinants of their actions. Furthermore, mechanical signals continue attenuating proinflammatory gene transcription for prolonged periods of time after their removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950929PMC
http://dx.doi.org/10.1152/ajpcell.00529.2005DOI Listing

Publication Analysis

Top Keywords

proinflammatory gene
12
dtf
8
dtf magnitudes
8
mrna expression
8
inos mrna
8
mechanical signals
8
fibrochondrocytes
5
expression
5
inos
5
mrna
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!