We have analysed alterations of alpha-skeletal actin expression and volume fraction of fibrosis in the ventricular myocardium and their functional counterpart in terms of arrhythmogenesis and haemodynamic variables, in rats with different degrees of compensated cardiac hypertrophy induced by infra-renal abdominal aortic coarctation. The following coarctation calibres were used: 1.3 (AC1.3 group), 0.7 (AC0.7) and 0.4 mm (AC0.4); age-matched rats were used as controls (C group). One month after surgery, spontaneous and sympathetic-induced ventricular arrhythmias were telemetrically recorded from conscious freely moving animals, and invasive haemodynamic measurements were performed in anaesthetized animals. After killing, subgroups of AC and C rats were used to evaluate in the left ventricle the expression and spatial distribution of alpha-skeletal actin and the amount of perivascular and interstitial fibrosis. As compared with C, all AC groups exhibited higher values of systolic pressure, ventricular weight and ventricular wall thickness. AC0.7 and AC0.4 rats also showed a larger amount of fibrosis and upregulation of alpha-skeletal actin expression associated with a higher vulnerability to ventricular arrhythmias (AC0.7 and AC0.4) and enhanced myocardial contractility (AC0.4). Our results illustrate the progressive changes in the extracellular matrix features accompanying early ventricular remodelling in response to different degrees of pressure overload that may be involved in the development of cardiac electrical instability. We also demonstrate for the first time a linear correlation between an increase in alpha-skeletal actin expression and the degree of compensated cardiac hypertrophy, possibly acting as an early compensatory mechanism to maintain normal mechanical performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/expphysiol.2005.032607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!