Studies on transcriptional regulation of endogenous genes by ERF2 transcription factor in tobacco cells.

Plant Cell Physiol

Molecular and Cellular Breeding Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 Japan.

Published: April 2006

In this study, we showed that overexpression of ethylene-responsive transcription factor (ERF) 2 activated the expression of endogenous genes that have the GCC box in their promoter region, in tobacco plants. These include not only a defense-related gene, CHN50, encoding class I basic chitinase, but also a transcriptional repressor gene, ERF3. In tobacco plants constitutively expressing ERF2:glucocorticoid receptor fusion protein, treatment with dexamethazone induced a rapid increase of ERF3 mRNA and a slow increase of CHN50 mRNA. These results suggest that an antagonistic interplay of ERF2 and ERF3 is involved in the transcriptional regulation of the class I basic chitinase genes in tobacco.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcj017DOI Listing

Publication Analysis

Top Keywords

transcriptional regulation
8
endogenous genes
8
transcription factor
8
tobacco plants
8
class basic
8
basic chitinase
8
studies transcriptional
4
regulation endogenous
4
genes erf2
4
erf2 transcription
4

Similar Publications

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.

View Article and Find Full Text PDF

Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!