A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. | LitMetric

AI Article Synopsis

  • Patients using eye drops face challenges with frequent dosing and application difficulties, prompting the development of a long-lasting pilocarpine-loaded nanoparticle formulation using chitosan and Carbopol.
  • The nanoparticles were characterized through various techniques, revealing a size of about 294 nm and demonstrating that the interaction between chitosan and Carbopol helps stabilize the formulation.
  • In tests, the pilocarpine-loaded nanoparticles showed superior sustained-release effects compared to traditional formulations, with significant long-lasting effects observed in animal studies, indicating their potential for improved clinical application in ophthalmic treatments.

Article Abstract

Patients using ophthalmic drops are faced with frequent dosing schedules and difficult drop instillation. Therefore, a long-lasting pilocarpine-loaded chitosan (CS)/Carbopol nanoparticle ophthalmic formulation was developed. The physicochemical properties of the prepared nanoparticles were investigated using dynamic light scattering, zeta-potential, transmission electron microscopy, Fourier transform infrared ray spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The sustained-release effects of pilocarpine-loaded nanoparticles were evaluated using in-vitro release and in-vivo miotic tests, and compared with pilocarpine in solution, gel and liposomes. We found that the prepared nanoparticles were about 294 nm in size. DSC and FT-IR studies suggested that an electrostatic interaction between CS and Carbopol contributes at least in part to the stabilization of pilocarpine/CS/Carbopol nanoparticles. When compared with pilocarpine in solution, gel or liposomes, the best slow-release profile of pilocarpine from the prepared nanoparticles occurred in a dissolution test. In the in-vivo miotic study, pilocarpine-loaded CS/Carbopol nanoparticles showed the most significant long-lasting decrease in the pupil diameter of rabbits. The advantages of CS and Carbopol are good biocompatibility, biodegradability and low toxicity. CS is also a mucoadhesive polymer. Thus, pilocarpine/CS/Carbopol nanoparticles may provide an excellent potential alternative ophthalmic sustained-release formulation of pilocarpine for clinical use. CS/Carbopol nanoparticles may also be useful for a variety of other therapeutic delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1211/jpp.58.2.0004DOI Listing

Publication Analysis

Top Keywords

prepared nanoparticles
12
nanoparticles
9
in-vivo miotic
8
compared pilocarpine
8
pilocarpine solution
8
solution gel
8
gel liposomes
8
pilocarpine/cs/carbopol nanoparticles
8
cs/carbopol nanoparticles
8
characterization pilocarpine-loaded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!