Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The main goal of this paper is to couple the Haseman-Elston method with a simple yet effective Bayesian factor-screening approach. This approach selects markers by considering a set of multigenic models that include epistasis effects. The markers are ranked based on their marginal posterior probability. A significant improvement over our previously proposed Bayesian variable selection methodology is a simple Metropolis-Hasting algorithm that requires minimum tuning on the prior settings. The algorithm, however, is also flexible enough for us to easily incorporate our hypotheses and avoid computational pitfalls. We apply our approach to the microsatellite data of Collaborative Studies on Genetics of Alcoholism using the coded values for the ALDX1 variable as our response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866746 | PMC |
http://dx.doi.org/10.1186/1471-2156-6-S1-S39 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!