In this study, we investigated the genetic organization and function of Escherichia coli yciT, a gene predicted by computational methods to belong to the DeoR-type family of transcriptional regulators. We show that transcription of yciT (here denoted deoT for deoR-Type) initiates from a promoter located upstream of a putative open reading frame (denoted deoL for deoT Leader). We also show that DeoT acts as a global regulator, repressing the expression of a number of genes involved in a variety of metabolic pathways including transport of maltose, fatty acid beta-oxidation and peptide degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2005.00020.x | DOI Listing |
FEMS Microbiol Lett
January 2006
Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
In this study, we investigated the genetic organization and function of Escherichia coli yciT, a gene predicted by computational methods to belong to the DeoR-type family of transcriptional regulators. We show that transcription of yciT (here denoted deoT for deoR-Type) initiates from a promoter located upstream of a putative open reading frame (denoted deoL for deoT Leader). We also show that DeoT acts as a global regulator, repressing the expression of a number of genes involved in a variety of metabolic pathways including transport of maltose, fatty acid beta-oxidation and peptide degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!