In the search for novel natural compounds effective against visceral nociception, the triterpenoid mixture alpha- and beta-amyrin, isolated from Protium heptaphyllum resin, was assessed in two established mouse models of visceral nociception. Mice were pretreated orally with alpha- and beta-amyrin (3, 10, 30, and 100 mg/kg) or vehicle, and the pain-related behavioral responses to intraperitoneal cyclophosphamide or to intracolonic mustard oil were analyzed. The triterpenoid mixture showed a dose-related significant antinociception against the cyclophosphamide-induced bladder pain, and at 100 mg/kg, the nociceptive behavioral expression was almost completely suppressed. Intracolonic mustard oil-induced nociceptive behaviors were maximally inhibited by 10 mg/kg alpha- and beta-amyrin mixture in a naloxone-reversible manner. While pretreatment with ruthenium red (3 mg/kg, s. c.), a non-specific transient receptor potential cation channel V1 (TRPV1) antagonist, also caused significant inhibition, the alpha (2)-adrenoceptor antagonist, yohimbine (2 mg/kg, s. c.), showed no significant effect. The triterpene mixture (10 mg/kg, p. o.) neither altered significantly the pentobarbital sleeping time, nor impaired the ambulation or motor coordination in open-field and rotarod tests, respectively, indicating the absence of sedative or motor abnormalities that could account for its antinociception. These results indicate that the antinociceptive potential of alpha- and beta-amyrin possibly involves the opioid and vanilloid (TRPV1) receptor mechanisms and further suggests that it could be useful to treat visceral pain of intestinal and pelvic origins.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2005-873150DOI Listing

Publication Analysis

Top Keywords

alpha- beta-amyrin
20
visceral nociception
12
triterpenoid mixture
12
protium heptaphyllum
8
100 mg/kg
8
intracolonic mustard
8
mg/kg
6
alpha-
5
beta-amyrin
5
mixture
5

Similar Publications

Chemical constituents and antibacterial activities of Cameroonian dark brown propolis against potential biofilm-forming bacteria.

Nat Prod Res

December 2024

Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium.

Propolis is a resinous material collected by different bee species from various plant exudates and used to seal holes in honeycombs, smoothen the internal walls, embalm intruders, improve health and prevent diseases. From its -hexane extract, eight compounds were isolated and characterised as: mangiferonic acid (); 1-hydroxymangiferonic acid (), new natural product; mangiferolic acid(); 27-hydroxymangiferolic acid (), reported here for the first time as propolis constituent; 27-hydroxymangiferonic acid (); -amyrin (); -amyrin () and lupeol (). The chemical structures of the isolated compounds were elucidated using spectroscopic methods, such as 1D and 2D-NMR, mass spectrometry and comparison with previous published reports.

View Article and Find Full Text PDF

One percent of persons over 65 years of age suffer from Parkinson's disease, a neurological ailment marked by dopaminergic neurons in the nigrostriatal pathway gradually dying and being depleted in the striatum. Parkin and PINK1 gene mutations, which are essential for mitophagy and impair mitochondrial function, are the cause of it. Parkinson's disease is linked to a number of motor and impairment disorders, including bradykinesia, rigid muscles, tremor at rest, and imbalance.

View Article and Find Full Text PDF

Background: Schott and Hook.f. are two commonly found vegetable species of the genus , found mainly in the Asian region.

View Article and Find Full Text PDF

Discovery and Functional Identification of 2,3-Oxidosqualene Cyclases and Cytochrome P450s in Triterpenoid Metabolic Pathways of .

J Agric Food Chem

December 2024

Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.

Article Synopsis
  • * The study identified key enzyme genes involved in the triterpenoid metabolic pathways using transcriptome sequencing and synthetic biology, particularly focusing on two 2,3-oxidosqualene cyclases and two cytochrome P450s.
  • * Researchers successfully reconstructed the biosynthetic pathway for ursane and oleanane-type triterpenoids in a yeast host, detailing the enzymatic reactions necessary for producing important compounds like ursolic acid and oleanolic acid.
View Article and Find Full Text PDF

A previously unreported oleanane triterpenoid, -amyrin heptadecanoate (), was isolated from the leaves of Thai (Oxalidaceae), along with five known compounds, -amyrin (), -sitosterol (), -sitosterol-D-glucoside (), -sitosteryl oleate (), and -tocopherol (). Their structures were elucidated through spectroscopic analysis, including extensive NMR and HRESIMS, and by comparison with the previous literature. All isolated compounds were evaluated for their -glucosidase inhibitory and cytotoxic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!