Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Improvement to maximal oxygen uptake is mainly due to myocardial adaptations brought about by physical training. As a consequence, the athlete's heart echocardiographic modifications associated with these adaptations are already well-known. We studied the relationships between maximal oxygen uptake (ml/min) and resting echocardiographic patterns in three athlete groups.
Methods: Tumbling (n=16), canoeing (n=12), cycling (n=12) and untrained (n=19) participants performed clinical examination and an echocardiogram. Trained groups performed a maximal graded exercise test on a cycle ergometer with gas exchange analysis.
Results: Sport-specific cardiac hypertrophy was observed. No significant echocardiographic difference was noted between untrained and tumbling participants. Canoeists showed higher end-diastolic thickness of the interventricular septum (P<0.001) and left ventricle mass (P<0.05) than untrained and higher posterior wall thickness (P<0.001) and than untrained and tumbling participants. In comparison between untrained, tumbling and cycling participants, left ventricular end-diastolic diameter (P<0.001) and left ventricular mass (P<0.001) was higher in cyclists. In trained subjects studied as a global group, the main linear correlation with maximal oxygen uptake concerned left ventricular end-diastolic diameter (r=0.92; P<0.001), left ventricular mass (r=0.60; P<0.001) and to a lesser extent aortic (r=0.39; P<0.01) and left atrium (r=0.36; P<0.05) diameters and E (r=0.38; P<0.05) and A (r=-0.33; P<0.05) Doppler peak velocities. Each trained group showed specific correlations between echocardiographic parameters and absolute maximal oxygen uptake. No further correlation was noted with left ventricular end-diastolic diameter or left ventricle mass when each group was studied individually.
Conclusions: In athletes, maximal oxygen uptake is partly linked to some resting echocardiographic parameters. Specific relationships between maximal oxygen uptake and some echocardiographic parameters in relation to the sport practised are also observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00149831-200602000-00018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!