We have recently reported that Pdx1-Cre-mediated whole pancreas inactivation of IGF-I gene [in pancreatic-specific IGF-I gene-deficient (PID) mice] results in increased beta-cell mass and significant protection against both type 1 and type 2 diabetes. Because the phenotype is unlikely a direct consequence of IGF-I deficiency, the present study was designed to explore possible activation of proislet factors in PID mice by using a whole genome DNA microarray. As a result, multiple members of the Reg family genes (Reg2, -3alpha, and -3beta, previously not known to promote islet cell growth) were significantly upregulated in the pancreas. This finding was subsequently confirmed by Northern blot and/or real-time PCR, which exhibited 2- to 8-fold increases in the levels of these mRNAs. Interestingly, these Reg family genes were also activated after streptozotocin-induced beta-cell damage and diabetes (wild-type T1D mice) when islet cells were undergoing regeneration. Immunohistochemistry revealed increased Reg proteins in exocrine as well as endocrine pancreas and suggested their potential role in beta-cell neogenesis in PID or T1D mice. Previously, other Reg proteins (Reg1 and islet neogenesis-associated protein) have been shown to promote islet cell replication and neogenesis. These uncharacterized Reg proteins may play a similar but more potent role, not only in normal islet cell growth in PID mice, but also in islet cell regeneration after T1D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950860PMC
http://dx.doi.org/10.1152/ajpendo.00596.2005DOI Listing

Publication Analysis

Top Keywords

islet cell
16
reg family
12
family genes
12
reg proteins
12
pancreatic-specific igf-i
8
igf-i gene
8
pid mice
8
promote islet
8
cell growth
8
t1d mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!