Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (T(m)) and thermodynamic (-DeltaG degrees ) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the -DeltaG degrees and T(m) values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson-Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290-350 nm range is correlated linearly with -DeltaG degrees and T(m), but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine-DNA adducts are recognized in nucleotide excision repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356535PMC
http://dx.doi.org/10.1093/nar/gkj480DOI Listing

Publication Analysis

Top Keywords

-deltag degrees
12
circular dichroism
8
population b-type
8
sequence effects
4
effects aminofluorene-modified
4
aminofluorene-modified dna
4
duplexes
4
dna duplexes
4
duplexes thermodynamic
4
thermodynamic circular
4

Similar Publications

In recent years, the search for more sustainable fillers for elastomeric composites than silica and carbon black has been underway. In this work, silanized starch was used as an innovative filler for elastomeric composites. Corn starch was chemically modified by silanization (with n-octadecyltrimethoxysilane) via a condensation reaction to produce a hydrophobic starch.

View Article and Find Full Text PDF

In this study, the mixture of zinc acetate dehydrates and boric acid was pyrolyzed in zeolite X to prepare novel B/ZnO/zeolite nanocomposites for the enhanced removal of tartrazine (TA) in aqueous environment. The composites are porous material with a relatively large pore size (35.3 nm).

View Article and Find Full Text PDF

The study delves into the binding properties of acridine-9-amine and its selected, mainly N-substituted derivatives (A9As), with calf thymus deoxyribonucleic acid (CT-DNA). This investigation, conducted using UV-Vis spectrophotometry, steady-state fluorescence spectroscopy and isothermal titration calorimetry, provides insights into the relationship between their structure and activity. The absorption spectra of the A9As exhibited a slight red shift and significant hypochromic effects, while the fluorescence emission intensities decreased in the presence of CT-DNA.

View Article and Find Full Text PDF

Structural insights into the ATP-dependent activation of NOD-like receptor with pyrin 3 (NLRP3) protein by molecular dynamics simulation.

J Biomol Struct Dyn

December 2024

Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.

The inflammasome-forming NOD-like receptor containing pyrin-3 (NLRP3) protein is a critical player in the innate immune responses to cellular danger signals. New structural data of NLRP3 provide a framework to probe the conformational impact of nucleotide binding. In this study, microsecond molecular dynamics (MD) simulations were used to detail information on the unique structural conformations adopted by NLRP3 with ATP or ADP binding.

View Article and Find Full Text PDF

Enzyme immobilization into carrier materials has broad importance in biotechnology, yet understanding the catalysis of enzymes bound to solid surfaces remains challenging. Here, we explore surface effects on the catalysis of sucrose phosphorylase through a fusion protein approach. We immobilize the enzyme via a structurally rigid α-helical linker [EAK] of tunable spacer length due to the variable number of pentapeptide repeats used ( = 6, 14, 19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!