Simulations are performed of 34- and 9-GHz EPR spectra, together with 94-GHz EPR spectra, from phospholipid probes spin-labelled at the C4-C14 positions of the sn-2 chain, in liquid-ordered and gel-phase membranes of dimyristoyl phosphatidylcholine with high and low cholesterol contents. The multifrequency simulation strategy involves: (i) obtaining partially averaged spin-Hamiltonian tensors from fast-motional simulations of the 94-GHz spectra; (ii) performing slow-motional simulations of the 34- and 9-GHz spectra by using these pre-averaged tensors with the stochastic Liouville formalism; (iii) constructing, by simulation, slow-motional calibrations for the differences, DeltaA(zz)(qx) and Deltag(zz)(qx), in effective A(zz)-hyperfine splittings and g(zz)-values between 34- (or 94-GHz) and 9-GHz spectra; (iv) using such calibrations for DeltaA(zz)(qx) and Deltag(zz)(qx) and dynamic parameters from stage (ii) as a guide to adjust the extent of pre-averaging of the spin-Hamiltonian tensors; and (v) repeating the 34- and 9-GHz simulations of stage (ii). By using this scheme it is possible to obtain consistent values of the rotational diffusion coefficients, D(R perpendicular) and D(R//), and the long-axis order parameter, S(zz), that characterize the slow axial motion of the lipid chains, from spectra at both 34 and 9GHz. Inclusion of spectra at 34GHz greatly improves precision in determining the D(R//) element of the slow diffusion tensor in these systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2006.01.005 | DOI Listing |
Int J Biol Macromol
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:
Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China.
The incorporation of ZIF-67 into hydrogels for wastewater pollutant remediation has been widely studied, but the synthesis often requires organic solvents such as methanol or ethanol, which can result in the generation of toxic liquid waste. In this study, a novel hydrogel (ZIF-67@SL) was synthesized by integrating ZIF-67 into a dual-network system of sodium lignosulfonate (SL) and acrylamide (AM) using an in situ precipitation method in water. The material was characterized by XRD, FTIR, XPS, SEM, TEM, BET, and TGA analyses.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States.
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.
View Article and Find Full Text PDFLuminescence
January 2025
Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, Lviv, Ukraine.
Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!