Loose ligation of the sciatic nerve in rats elicits transient up-regulation of Homer1a gene expression in the spinal dorsal horn.

Neurosci Lett

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA.

Published: May 2006

Changes in the expression of many genes underlie injury-elicited plasticity in the spinal dorsal horn. Homer1 is a recently identified gene that appears to play a critical role in the expression of synaptic plasticity in several brain regions, including the hippocampus. In this study we investigated the early consequences of chronic constriction injury of the sciatic nerve on Homer1 gene expression in the spinal dorsal horn. Significant increases in Homer1a mRNA levels in the ipsilateral dorsal horn were detected at 4h post-ligation, and these levels remained elevated at 8h before returning to baseline values by 24h after the ligation. In contrast, the levels of Homer1b/c mRNA did not change at any of these selected post-ligation times. The ligation-associated induction of Homer1a was dependent on activation of NMDA receptors and the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway. The non-competitive NMDA-receptor antagonist, MK-801, and a specific inhibitor of the ERK1/2 pathway, U0126, significantly attenuated the injury-elicited increases in Homer1a mRNA when compared to saline-treated animals. These data provide the first evidence for a potential role of Homer1a in peripheral nerve injury-elicited plasticity in the spinal dorsal horn. These data also imply that the early and transient up-regulation of Homer1a gene expression may be an important contributor to the eventual development of neuropathic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2006.01.011DOI Listing

Publication Analysis

Top Keywords

dorsal horn
20
spinal dorsal
16
gene expression
12
sciatic nerve
8
transient up-regulation
8
up-regulation homer1a
8
homer1a gene
8
expression spinal
8
injury-elicited plasticity
8
plasticity spinal
8

Similar Publications

Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.

View Article and Find Full Text PDF

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!