Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Here, the effects of the antioxidant, alpha-lipoic acid (ALA) were tested on the Tg2576 mouse, a transgenic model of cerebral amyloidosis associated with AD. Ten-month old Tg2576 and wild type mice were fed an ALA-containing diet (0.1%) or control diet for 6 months and then assessed for the influence of diet on memory and neuropathology. ALA-treated Tg2576 mice exhibited significantly improved learning, and memory retention in the Morris water maze task compared to untreated Tg2576 mice. Twenty-four hours after contextual fear conditioning, untreated Tg2576 mice exhibited significantly impaired context-dependent freezing. ALA-treated Tg2576 mice exhibited significantly more context freezing than the untreated Tg2576 mice. Assessment of brain soluble and insoluble beta-amyloid levels revealed no differences between ALA-treated and untreated Tg2576 mice. Brain levels of nitrotyrosine, a marker of nitrative stress, were elevated in Tg2576 mice, while F2 isoprostanes and neuroprostanes, oxidative stress markers, were not elevated in the Tg2576 mice relative to wild type. These data indicate that chronic dietary ALA can reduce hippocampal-dependent memory deficits of Tg2576 mice without affecting beta-amyloid levels or plaque deposition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2005.12.014DOI Listing

Publication Analysis

Top Keywords

tg2576 mice
40
untreated tg2576
16
tg2576
12
mice exhibited
12
mice
11
chronic dietary
8
alpha-lipoic acid
8
oxidative stress
8
wild type
8
ala-treated tg2576
8

Similar Publications

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF

Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models.

Physiol Behav

December 2024

Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA. Electronic address:

Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Endocannabinoids show promise in reducing neuroinflammation related to Alzheimer's disease (AD) by potentially rebalancing autophagic mechanisms.
  • Researchers administered URB597, an FAAH inhibitor that increases anandamide levels, to both microglial cultures and Tg2576 transgenic mice.
  • The treatment led to a shift in microglia toward an anti-inflammatory state, reduced amyloid plaque formation, and restored key autophagy markers, indicating a possible therapeutic approach for AD.
View Article and Find Full Text PDF

Extra-cerebral manifestations of Alzheimer's disease (AD) develop in the retina, which is, therefore, considered a "window to the brain". Recent studies demonstrated the dysregulation of the endocannabinoid (eCB) system (ECS) in AD brain. Here, we explored the possible alterations of ECS and the onset of gliosis in the retina of AD-like mice.

View Article and Find Full Text PDF

mCLAS adaptively rescues disease-specific sleep and wake phenotypes in neurodegeneration.

Sleep Med

December 2024

Department of Neurology, University Hospital Zurich (USZ), Switzerland; Neuroscience Center Zurich (ZNZ), Switzerland; Center of Competence Sleep and Health, University of Zurich (UZH), Switzerland. Electronic address:

Article Synopsis
  • Sleep changes are common in Alzheimer's and Parkinson's diseases, affecting brain health during deep sleep.
  • A new method called mouse closed-loop auditory stimulation (mCLAS) has been developed to enhance slow-wave activity during deep sleep in models of these diseases.
  • Initial findings show that mCLAS can improve sleep patterns in mice, with different effects seen in Alzheimer's versus Parkinson's models, suggesting potential for future sleep-based therapies in neurodegenerative conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!