Wolbachia and other endosymbiont infections in spiders.

Mol Ecol

Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

Published: February 2006

Maternally inherited endosymbiotic bacteria, such as Wolbachia, Rickettsia and Spiroplasma, have been shown to have wide-ranging effects on the reproduction of their hosts. We present data on the presence of each of these sorts of bacteria in spiders, a group for which there are currently few data, but where such infections could explain many observed reproductive characteristics, such as sex ratio skew. The Wolbachia and Spiroplasma variants that we find in spiders belong to the same clades previously found to infect other arthropods, but many of the rickettsias belong to two, novel, hitherto spider-specific bacterial lineages. We find evidence for coexistence of different bacterial types within species, and in some cases, within individuals. We suggest that spiders present a useful opportunity for studying the effect of these sorts of bacteria on the evolution of host traits, such as those that are under sexual selection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2005.02802.xDOI Listing

Publication Analysis

Top Keywords

sorts bacteria
8
wolbachia endosymbiont
4
endosymbiont infections
4
spiders
4
infections spiders
4
spiders maternally
4
maternally inherited
4
inherited endosymbiotic
4
endosymbiotic bacteria
4
bacteria wolbachia
4

Similar Publications

Roles of Mature Domain Targeting Signals (MTSs) for Protein Translocation and Secretion in .

Int J Mol Sci

December 2024

Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.

is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.

View Article and Find Full Text PDF

Background: Genetic discontinuity represents abrupt breaks in genomic identity among species. Advances in genome sequencing have enhanced our ability to track and characterize genetic discontinuity in bacterial populations. However, exploring the degree to which bacterial diversity exists as a continuum or sorted into discrete and readily defined species remains a challenge in microbial ecology.

View Article and Find Full Text PDF

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!