The reaction of Fe2+ with CN-, which was first performed in 1704, has been used to synthesize a new series of basic [FeII,III(CN)4L2]n- complexes, where L is a monodentate ligand. trans-Na2[FeII(CN)4(DMSO)2] and cis-[NEt4]2[FeII(CN)4(pyridine)2] are synthesized by the direct reaction of FeCl2 with 4 equiv of CN- in DMSO or pyridine. Air oxidation of the latter compound gives cis-[NEt4][FeIII(CN)4(pyridine)2]. The non-cyanide ligands in these complexes undergo facile ligand exchange reactions with solvent. Reaction of cis-[NEt4]2[FeII(CN)4(pyridine)2] with CO at room temperature gives trans-[NEt4]2[FeII(CN)4(pyridine)(CO)].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566954PMC
http://dx.doi.org/10.1021/ja0571951DOI Listing

Publication Analysis

Top Keywords

reaction fe2+
8
fe2+ cn-
8
[feiiiiicn4l2]n- complexes
8
study reaction
4
cn- synthesis
4
synthesis characterization
4
characterization cis
4
cis trans
4
trans [feiiiiicn4l2]n-
4
complexes reaction
4

Similar Publications

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde.

Int J Mol Sci

January 2025

Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by an imbalance in chondrocyte metabolism. Ferroptosis has been implicated in the pathogenesis of OA. The role of Sirt1, a deacetylase, in mediating deacetylation during ferroptosis in OA chondrocytes remains underexplored.

View Article and Find Full Text PDF

Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.

The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.

View Article and Find Full Text PDF

Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!