A new electrochemical biochip for the detection of DNA sequences was developed. The entire biochip-i.e., working, reference, and counter electrodes-was constructed based on the screen-printing technique and exhibits eight working electrodes that could be individually addressed and grafted through a simple electrochemical procedure. Screen-printed electrode networks were functionalized electrochemically with 1-ethyl-3-(3dimethylaminopropyl)carbodidiimide according to a simple procedure. Single-stranded DNA with a C6-NH(2) linker at the 5'-end was then covalently bound to the surface to act as probe for the direct, nonlabeled, detection of complementary strands in a conductive liquid medium. In the present system, the study was focused on a particular codon (273) localized in the exon 8 of the p53 gene (20 mer, TTGAGGTGCATGTTTGTGCC). The integrity of the immobilized probes and its ability to capture target sequences was monitored through chemiluminescent detection following the hybridization of a peroxidase-labeled target. The grafting of the probe at the electrode surface was shown to generate significant shifts of the Nyquist curves measured in the 10-kHz to 80-Hz range. These variations of the faradaic impedance were found to be related to changes of the double layer capacitance of the electrochemical system's equivalent circuit. Similarly, hybridization of complementary strands was monitored through the measurements of these shifts, which enabled the detection of target sequences from 1 to 200 nM. Discrimination between complementary, noncomplementary, and single-nucleotide mismatch targets was easily accomplished.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac051585oDOI Listing

Publication Analysis

Top Keywords

screen-printed electrode
8
electrode networks
8
complementary strands
8
target sequences
8
detection
5
dna covalent
4
covalent immobilization
4
immobilization screen-printed
4
networks direct
4
direct label-free
4

Similar Publications

Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).

View Article and Find Full Text PDF

In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine.

View Article and Find Full Text PDF

Carboxylated Graphene: An Innovative Approach to Enhanced IgA-SARS-CoV-2 Electrochemical Biosensing.

Biosensors (Basel)

January 2025

LABEL-Laboratório de Bioeletrônica e Eletroanalítica, Central Analítica Multidisciplinar, Universidade Federal do Amazonas, Manaus 69067-005, Amazonas, Brazil.

Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the CG was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!