Bone morphogenetic proteins (BMPs) are the important cytokine involving in cell differentiation especially in bone morphogenesis. Hepatic stellate cells (HSCs) undergo a trans-differentiation during their activation after liver injury. Although it has been demonstrated that BMP2 and BMP4 significantly increased the abundance of smooth muscle alpha actin (alpha-SMA) in cultured HSCs, the expression of BMPs has not been examined during the activation of HSCs. In current study, we documented the expression of BMP4 in bile duct ligation (BDL) rats and HSCs in culture. We have found that the expression of BMP4 was significantly elevated in the liver of BDL rats. The increase in BMP4 protein showed two peaks during 6 weeks after BDL. The expression and phosphorylation of Smad1, ERK1/2 and p38 were also elevated after BDL. Moreover, there was a gradual elevation of BMP4 mRNA abundance during 24 days' in vitro culture of HSCs. Furthermore, BMP4 stimulated phosphorylation of Smad1 and ERK1/2 in HSCs. In conclusion, BMP4 expression was significantly increased in the liver of BDL rats and HSCs in culture. These findings indicate that BMP4 may mediate HSC activation through activation of Smad1 and ERK1/2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20593DOI Listing

Publication Analysis

Top Keywords

smad1 erk1/2
16
bdl rats
12
bone morphogenetic
8
bile duct
8
duct ligation
8
activation smad1
8
hepatic stellate
8
stellate cells
8
bmp4
8
expression bmp4
8

Similar Publications

Slit1 Promotes Hypertrophic Scar Formation Through the TGF-β Signaling Pathway.

Medicina (Kaunas)

December 2024

Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea.

Slit1 is a secreted protein that is closely related to cell movement and adhesion. Few studies related to fibrosis exist, and the preponderance of current research is confined to the proliferation and differentiation of neural systems. Hypertrophic scars (HTSs) are delineated by an overproduction of the extracellular matrix (ECM) by activated fibroblasts, leading to anomalous fibrosis, which is a severe sequela of burns.

View Article and Find Full Text PDF

Osteoporosis (OP) is a metabolic disease characterized by low bone mineral mass owing to osteoblast dysfunction. Eucommia ulmoides Oliver (EuO) is a Chinese herbal medicine traditionally used to treat OP. Here, a polysaccharide purified from the EuO cortex (EuOCP3) was administered to OP mice constructed with dexamethasone (Dex) to investigate its anti-OP activity.

View Article and Find Full Text PDF

Diverse mechanisms have been established to understand the chemoresistance of hepatocellular carcinoma (HCC), but the contribution of non-coding RNAs is not surveyed well. Here, we aimed to explore the lncRNA-miRNA axis in Hepatitis C and B virus (HCV and HBV) infected HCC to investigate the molecular mechanism of chemoresistance and to identify a potential therapeutic target for HCC. The small RNA transcriptome analysis followed by qRT-PCR validation with the liver tissues of both HCV and HBV infected HCC patients revealed that miR-424-5p, miR-136-3p, miR-139-5p, miR-223-3p, and miR-375-3p were the most downregulated miRNAs in HCC compared to normal (log fold change ≤-1.

View Article and Find Full Text PDF

Targeting ONECUT2 inhibits tumor angiogenesis via down-regulating ZKSCAN3/VEGFA.

Biochem Pharmacol

July 2024

Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China. Electronic address:

OC-2 plays a vital role in tumor growth, metastasis and angiogenesis, but molecular mechanism how OC-2 regulates angiogenic factors is unclear. We found that OC-2 was highly expressed in HepG2, COLO, MCF-7, SKOV3 cells and rectum carcinoma tissues, and angiogenic factors levels were positively related to OC-2. Then OC-2 KD inhibited the tumor growth, metastasis and angiogenesis process in vitro and vivo.

View Article and Find Full Text PDF

Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function.

Int J Biol Macromol

May 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. Electronic address:

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!