A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. | LitMetric

The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M510258200DOI Listing

Publication Analysis

Top Keywords

role fxr
12
fxr-deficient mice
12
adipose tissue
12
farnesoid receptor
8
peripheral insulin
8
insulin sensitivity
8
fxr
8
fxr deficiency
8
insulin resistance
8
insulin signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!