The HERG potassium channel might have a non-canonical drug binding site, distinct from the channel's inner cavity, that could be responsible for elements of closed-state pharmacological inhibition of the channel. The macrolide antibiotic erythromycin is a drug that may block unconventionally because of its size. Here we used whole-cell patch-clamp recording at 37 degrees C from heterologously expressed HERG channels in a mammalian cell line to show that erythromycin either produces a rapid open-state-dependent HERG channel inhibition, or components of both open-state-dependent and closed-state-dependent inhibition. Alanine-substitution of HERG's canonical determinants of blockade revealed that Y652 was not important as a molecular determinant of blockade, and that mutation of F656 resulted in only weak attenuation of inhibition. In computer models of the channel, erythromycin could make several direct contacts with F656, but not with Y652, in the open-state model, and erythromycin was unable to fit into a closed-state channel model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.01.008 | DOI Listing |
J Med Chem
December 2024
Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.
View Article and Find Full Text PDFJ Cheminform
December 2024
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.
Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain. Electronic address:
Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
December 2024
School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.
The growing use of nitazene synthetic opioids heralds a new phase of the opioid crisis. However, limited information exists on the toxic effects of these drugs, aside from a propensity for respiratory depression. With restricted research availability of nitazenes, we used machine-learning-based tools to evaluate five nitazene compounds' interaction potential with the hERG potassium channel, a key drug antitarget in the heart.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K) uptake by targeting the voltage-gated K (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!