Glial cells in synaptic plasticity.

J Physiol Paris

Centre de Recherche en Sciences Neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, Que., Canada H3C 3J7.

Published: June 2006

Plasticity of synaptic transmission is believed to be the cellular basis for learning and memory, and depends upon different pre- and post-synaptic neuronal mechanisms. Recently, however, an increasing number of studies have implicated a third element in plasticity; the perisynaptic glial cell. Originally glial cells were thought to be important for metabolic maintenance and support of the nervous system. However, work in the past decade has clearly demonstrated active involvement of glia in stability and overall nervous system function as well as synaptic plasticity. Through specific modulation of glial cell function, a wide variety of roles for glia in synaptic plasticity have been uncovered. Furthermore, interesting circumstantial evidence suggests a glial involvement in multiple other types of plasticity. We will discuss recent advances in neuron-glial interactions that take place during synaptic plasticity and explore different plasticity phenomena in which glial cells may be involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphysparis.2005.12.002DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
16
glial cells
12
plasticity
8
glial cell
8
nervous system
8
glial
6
synaptic
5
cells synaptic
4
plasticity plasticity
4
plasticity synaptic
4

Similar Publications

Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes.

View Article and Find Full Text PDF

The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.

View Article and Find Full Text PDF

Understanding the neurobiological mechanisms of LPS‑induced memory impairment.

Acta Neurobiol Exp (Wars)

January 2025

Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.

In recent years, growing evidence suggests that lipopolysaccharide (LPS), a bacterial endotoxin found in the outer membrane of gram‑negative bacteria, can influence cognitive functions, particularly memory formation and retrieval. However, the underlying mechanisms through which LPS exerts its effects on memory remain incompletely understood. This review used various electronic databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published between 2000 and 2024.

View Article and Find Full Text PDF

The integral role of in brain function: from neurogenesis to synaptic plasticity and social behavior.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a change in brain function or evidence of brain pathology caused by external mechanical forces. Brain Derived Neurotrophic Factor (BDNF) is a neurotropin that functions as a neuron protective. Nigella sativa L is reported to have an antioxidant effect, administration of Nigella Sativa L to rats treated with ischemia-reperfusion brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!