Human adipose tissue has been recognized as a source of adult stem cells for tissue engineering applications such as bone, cartilage, and soft tissue repair. For the success of these tissue-engineering approaches, a cell delivery vehicle such as a hydrogel or scaffold is required to position the stem cells at the site of need. Surface modification techniques have been instrumental in the development of scaffolds that promote cell-surface interactions. In this study, poly(caprolactone) (PCL), surfaces were modified in order to promote the attachment and proliferation of adipose-derived stem cells (ASCs). RGD, YIGSR, and IKVAV peptide sequences derived from the extracellular matrix protein laminin were each covalently attached to an aminated polymer surface using carbodiimide chemistry. The surface was characterized using scanning electron microscopy (SEM), goniometry and X-ray photoelectron spectroscopy (XPS). The attachment and proliferation of ASCs was assessed on the different peptide-treated surfaces. XPS analysis confirmed the presence of the peptide sequences on the surface of the polymer as indicated by the increase in the nitrogen/carbon ratio on the surface of the polymer. Among all peptide sequences tested, IKVAV-treated surfaces had a significantly greater number of ASCs bound 2 and 3 days after cell seeding. SEM confirmed differences in the morphology of the cells attached to the three peptide-treated surfaces. These results indicate that IKVAV is a suitable peptide sequence for use in surface modification techniques aimed at improving the attachment of ASCs to a tissue-engineered scaffold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2006.01.011 | DOI Listing |
BioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!