Patients with chronic renal failure usually require exogenous erythropoietin (epo) to alleviate anaemia resulting from inadequate epo production by the kidneys. We have recently shown that severe anaemia in genetically manipulated epo-deficient mice (EpoTAg) can be corrected by adoptively transferred epo-producing lymphocytes. The aim of this study was to investigate the precise effects of human epo administration by this route on erythropoietic development in epo-deficient mice. The erythroblast compartments of untreated and treated EpoTAg mice were analysed in comparison with wild-type mice. The early erythroblast population was reduced in the bone marrow of epo-deficient mice, whilst the number of erythroid colony-forming units (CFU-E) was not significantly compromised. This paucity in marrow early erythroblasts was restored to normal values in treated mutant mice. In addition, the early erythroblast population was expanded in the spleens of treated animals. These findings show that the early erythroblasts are important targets of epo and that epo corrects anaemia of epo-deficient mice by restoring marrow function and splenic erythropoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2141.2005.05905.xDOI Listing

Publication Analysis

Top Keywords

epo-deficient mice
16
early erythroblast
12
severe anaemia
8
erythroblast population
8
early erythroblasts
8
mice
7
early
5
epo
5
correction severe
4
anaemia
4

Similar Publications

Erythropoietin (Epo) and its receptor are expressed in central respiratory areas. We hypothesized that chronic Epo deficiency alters functioning of central respiratory areas and thus the respiratory adaptation to hypercapnia. The hypercapnic ventilatory response (HcVR) was evaluated by whole body plethysmography in wild type (WT) and Epo deficient (Epo-TAg) adult male mice under 4%CO.

View Article and Find Full Text PDF

Pharmacological, but not genetic, alteration of neural Epo modifies the CO/H central chemosensitivity in postnatal mice.

Respir Physiol Neurobiol

August 2017

Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia. Electronic address:

Cerebral erythropoietin (Epo) plays a crucial role for respiratory control in newborn rodents. We showed previously that soluble Epo receptor (sEpoR: an Epo antagonist) reduces basal ventilation and hypoxic hyperventilation at postnatal day 10 (P10) and in adult mice. However, at these ages (P10 and adulthood), Epo had no effect on central chemosensitivity.

View Article and Find Full Text PDF

The erythropoietin (Epo) gene is under tissue-specific inducible regulation. Because the kidney is the primary EPO-producing tissue in adults, impaired EPO production in chronic kidney disorders results in serious renal anemia. The Epo gene contains a liver-specific enhancer in the 3' region, but the kidney-specific enhancer for gene expression in renal EPO-producing (REP) cells remains elusive.

View Article and Find Full Text PDF

Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice.

Hypoxia (Auckl)

April 2016

Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris.

Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!