Bacterial NO synthase (NOS)-like proteins such as that from Bacillus subtilis (bsNOS) share a high degree of structural homology with the oxygenase domain of mammalian NOSs (mNOSs), but biochemical studies have yet failed to establish that they are specifically capable of producing NO. To better understand the actual function and role of bacterial NOSs, the structure and environment of bsNOS heme were examined with resonance Raman (RR) and ATR-FTIR spectroscopies. We analyzed the structural effects of l-arginine (Arg) and tetrahydrobiopterin (H(4)B) binding on several key complexes (ferric, ferrous, ferrous-CO, and ferric-NO) and characterized the bonding properties of the proximal cysteine ligand. While our study fully confirms the similarity between bsNOS and mNOS heme pocket structures, our results also highlight important differences. (i) Contrary to other NOSs, resting native ferric bsNOS exhibits an exclusive five-coordinate high-spin iron status. (ii) The nu(Fe)(-)(CO) and nu(CO) mode frequencies of the bsNOS Fe(II)CO complexes indicate a weaker electrostatic interaction between Arg and CO. (iii) bsNOS is characterized by a stronger Fe-S bond (nu(Fe)(-)(S) = 342 cm(-)(1)), a lower nu(4) frequency, and a negative shift in the nu(Fe)(-)(CO)/nu(CO) correlation. (iv) The effects of H(4)B on bsNOS heme structure are minor compared to the ones reported on mNOS. These results suggest distinct distal heme environments between mNOS and bsNOS, greater electron-donation properties of bsNOS cysteine proximal ligand, and the absence of a significant influence of H(4)B on bsNOS heme properties. These subtle structural differences may reflect changes in the chemistry and physiological role of bacterial NOSs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi051710q | DOI Listing |
J Inorg Biochem
January 2023
The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
Nitric oxide synthase (NOS) is a cytochrome P450-type mono‑oxygenase that catalyzes the oxidation of L-arginine to nitric oxide. We previously observed that intramolecular electron transfer from biopterin to Fe-O in Deinococcus radiodurans NOS (DrNOS) using pulse radiolysis. However, the rate of electron transfer in DrNOS (2.
View Article and Find Full Text PDFBiochemistry
February 2017
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France.
Nitric oxide is produced in mammals by the nitric oxide synthase (NOS) isoforms at a catalytic site comprising a heme associated with a biopterin cofactor. Through genome sequencing, proteins that are highly homologous to the oxygenase domain of NOSs have been identified, in particular in bacteria. The active site is highly conserved except for a valine residue in the distal pocket that is replaced with an isoleucine in bacteria.
View Article and Find Full Text PDFPLoS One
March 2016
Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany.
Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra), which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH), which catalyses the final step of heme b biogenesis.
View Article and Find Full Text PDFJ Biol Chem
October 2014
From the Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity.
View Article and Find Full Text PDFBiophys J
July 2012
CNRS, Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
H(4)B is an essential catalytic cofactor of the mNOSs. It acts as an electron donor and activates the ferrous heme-oxygen complex intermediate during Arg oxidation (first step) and NOHA oxidation (second step) leading to nitric oxide and citrulline as final products. However, its role as a proton donor is still debated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!