The purpose of this study was to evaluate the adhesive performance of luting cements to a noble metal alloy treated with metal conditioners. Cast disk specimens made of a noble metal alloy were gritblasted with alumina followed by no treatment or priming with two different types of metal conditioner. A mold was placed on the metal surface and filled with luting cement. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours, then shear tested at a cross-head speed of 1.0 mm/minute. ANOVA and Tukey's HSD tests (alpha=0.05) were done. The mean bond strength of resin-modified glass ionomer cement increased significantly with metal conditioner application compared to the controls, indicating the efficacy of the tested metal conditioners in improving bond strength. Based on the results of this study, it seemed to be a useful method to incorporate a functional monomer into resin cements so as to improve the bond strength to a noble metal alloy.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.24.654DOI Listing

Publication Analysis

Top Keywords

bond strength
16
noble metal
16
metal conditioner
12
metal alloy
12
metal
10
conditioner application
8
luting cements
8
cements noble
8
metal conditioners
8
bond
4

Similar Publications

Covalent adaptable networks (CANs) offer innovative solutions for the reprocessing and recycling of thermoset polymers. However, achieving a balance between easy reprocessing and creep resistance remains a challenge. This study focuses on designing and synthesizing polyurethane (PU) materials with tailored properties by manipulating the stereochemistry of diamine chain extenders.

View Article and Find Full Text PDF

Effect of sulfinate salt on bonding and polymerization of adhesive to intracoronally bleached dentin.

Sci Rep

January 2025

Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.

To evaluate the effect of sulfinate salt on the bond performance of a two-step self-etch adhesive to an intracoronally bleached pulpal dentin surface. Intracoronally bleached bovine teeth were treated with or without sulfinate salt (sulfinate agent (SA): Clearfil DC activator) before 2-SEA (Clearfil SE Bond 2) application, while unbleached teeth served as the control (n = 5 teeth). Microtensile bond strength (µTBS) using the bonded surface area of 1 mm at the crosshead speed of 1 mm/min measurements after 24 h storage and thermocycles (TC), degree of conversion (DC) analyses by Raman spectroscopy (n = 3 teeth), ultrastructure of resin-dentin interface (n = 3 teeth), and intracoronally bleached pulp chamber dentin surface (n = 3 teeth) observations by scanning electron microscopy (SEM) were subsequently performed.

View Article and Find Full Text PDF

Hydrogen Evolution Reaction in Borophene: Puckering Mechanism and the Role of Coordination Number.

ACS Omega

January 2025

Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia.

Using the free energy of hydrogen adsorption (Δ ) as the indicator, five borophene phases are previously shown to possess high catalytic activity for the hydrogen evolution reaction (HER). On these borophene phases, we investigate the role of the coordination number (CN = 4, 5, 6) of the adsorption sites and the puckering of the adsorption site. CN is discovered to have a profound effect on the Δ distribution, charge, and puckering height () of adsorption sites.

View Article and Find Full Text PDF

Impact of surface conditioner phytic acid (IP6) Er,Cr:YSGG laser (ECYL) methylene blue photodynamic therapy (MB-PDT) on the microleakage and shear bond strength (SBS) of resin-modified glass ionomer cement (RMGIC) to primary sound dentin. Overall, 80 extracted sound primary molars were collected followed by their submergence in self-cure acrylic resin. The dentin surface was exposed and made flat and was assigned into four groups based on the surface conditioning.

View Article and Find Full Text PDF

Bonding performance of universal adhesive systems with dual-polymerising resin cements to various dental substrates: in vitro study.

BMC Oral Health

January 2025

Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.

Background: Resin cements often require substrate-specific pretreatment. Recently, universal adhesive systems have been introduced, simplifying procedures by eliminating the need for multiple adhesives and offering options that do not require light curing. This study investigated the bonding performance of universal adhesive systems combined with dual-polymerising resin cements on enamel, dentin, zirconia, lithium disilicate ceramics (LDS), and resin blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!