Inhaled NO restores lung structure in eNOS-deficient mice recovering from neonatal hypoxia.

Am J Physiol Lung Cell Mol Physiol

Pediatric Heart Lung Center, Dept. of Pediatrics, UCHSC at Fitzsimmons, Pediatrics 8317, PO Box 6511, Aurora, CO 80045, USA.

Published: July 2006

AI Article Synopsis

  • Neonatal mice lacking endothelial nitric oxide synthase (eNOS-/-) show ongoing lung growth issues after hypoxic injury compared to normal mice.
  • Inhaled nitric oxide (NO) therapy helps restore normal lung structure in these eNOS-/- mice during recovery, suggesting a therapeutic role for NO.
  • Lung vascular growth factors are significantly higher in eNOS-/- mice treated with NO, indicating that NO enhances lung recovery mechanisms.

Article Abstract

We have previously shown that neonatal mice deficient in endothelial nitric oxide synthase (eNOS-/-) are more susceptible to hypoxic inhibition of alveolar and vascular growth. Although eNOS is downregulated, the role of nitric oxide (NO) during recovery after neonatal lung injury is poorly understood. We hypothesized that lung vascular and alveolar growth would remain impaired in eNOS-/- mice during recovery in room air and that NO therapy would augment compensatory lung growth in the eNOS-/- mice during recovery. Mice (1 day old) from heterozygous (eNOS+/-) parents were placed in hypobaric hypoxia (Fi(O2) = 0.16). After 10 days, pups were to recovered in room air (HR group) or inhaled NO (10 parts/million; HiNO group) until 3 wk of age, when lung tissue was collected. Morphometric analysis revealed that the eNOS-/- mice in the HR group had persistently abnormal lung structure compared with eNOS-sufficient (eNOS+/+) mice (increased mean linear intercept and reduced radial alveolar counts, nodal point density, and vessel density). Lung morphology of the eNOS+/- was not different from eNOS+/+. Inhaled NO after neonatal hypoxia stimulated compensatory lung growth in eNOS-/- mice that completely restored normal lung structure. eNOS+/- mice (HR group) had a 2.5-fold increase in lung vascular endothelial growth factor (VEGFR)-2 protein compared with eNOS+/+ (P < 0.05). eNOS-/- mice (HiNO group) had a 66% increase in lung VEGFR-2 protein compared with eNOS-/- (HR group; P < 0.01). We conclude that deficiency of eNOS leads to a persistent failure of lung growth during recovery from neonatal hypoxia and that, after hypoxia, inhaled NO stimulates alveolar and vascular growth in eNOS-/- mice.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00395.2005DOI Listing

Publication Analysis

Top Keywords

enos-/- mice
24
lung
12
lung structure
12
neonatal hypoxia
12
lung growth
12
growth enos-/-
12
mice
11
nitric oxide
8
enos-/-
8
alveolar vascular
8

Similar Publications

Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.

View Article and Find Full Text PDF

Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation.

View Article and Find Full Text PDF

Diabetes is an incurable, chronic disease that can lead to many complications, including angiopathy, peripheral neuropathy, and erectile dysfunction (ED). The angiopoietin-Tie2 signaling pathway plays a critical role in blood vessel development, formation, remodeling, and peripheral nerve regeneration. Therefore, strategies for activating the Tie2 signaling pathway have been developed as potential therapies for neurovascular diseases.

View Article and Find Full Text PDF

ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction.

Life Sci

December 2024

Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

Endothelial cell-selective adhesion molecule (ESAM) is a member of tight junction molecules, highly abundant in the heart and the lung, and plays a role in regulating endothelial cell permeability. We previously reported that mice with genetic ESAM deficiency (ESAM) exhibit coronary microvascular dysfunction leading to the development of left ventricular diastolic dysfunction. Here, we hypothesize that ESAM mice display impairments in the pulmonary vasculature, affecting the overall pulmonary vascular resistance (PVR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!