Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), making it amenable to gene- or cell-based therapies. Another possible treatment entails the combination of both principles by transplantation of autologous myogenic cells after their genetic complementation. This approach requires efficient and stable transduction of these cells with recombinant DMD. Recently, we generated a dual high-capacity (hc) adenovirus (Ad)-adeno-associated virus (AAV) hybrid vector (HV) that can deliver two full-length dystrophin-encoding modules into target cells. We showed that HV transduction of human cells containing AAV Rep proteins leads to the insertion of foreign DNA into the AAVS1 locus. Here, we improved HV entry into muscle cells from DMD patients. After having verified that these cells barely express the coxsackie B virus and Ad receptor (CAR), which constitutes the attachment molecule for Ad serotype 5 (Ad5) fibers, we equipped dual hcAd/AAV HV particles with Ad serotype 50 fiber domains to achieve CAR-independent uptake. These retargeted vectors complemented much more efficiently the genetic defect of dystrophin-defective myoblasts and myotubes than their isogenic counterparts with conventional Ad5 fibers. Importantly, the accumulation of beta-dystroglycan along the membranes of vector-treated DMD myotubes indicated proper assembly of dystrophin-associated glycoprotein complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2005.11.018DOI Listing

Publication Analysis

Top Keywords

cells
8
myogenic cells
8
dual high-capacity
8
duchenne muscular
8
muscular dystrophy
8
muscle cells
8
ad5 fibers
8
dmd
5
transduction myogenic
4
cells retargeted
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Objective: Within the scope of this research, the long-term effects of experimental blunt head trauma on immature rats and MK-801 administered acutely after trauma on the brain tissue will be examined. In addition, the impact of trauma and MK-801 on Nestin and CD133, which are essential stem cells, will be evaluated by immunohistochemical and ELISA methods.

Methods: In this study, the contusion trauma model was used.

View Article and Find Full Text PDF

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infects cells by attaching to heparan sulfate proteoglycans (HSPG) and Na/taurocholate cotransporting polypeptide (NTCP). The endothelial lipase LIPG bridges HSPG and HBV, facilitating HBV attachment. From a randomized peptide expression library, we identified a short sequence binding to LIPG.

View Article and Find Full Text PDF

Fluorescent probes are widely used in cellular imaging and disease diagnosis. Acting as substitute carriers, fluorescent probes can also be used to help transport drugs within cells. In this study, commonly used fluorophores, TAMRA (5-carboxytetramethylrhodamine), PBA (1-pyrenebutyric acid), NBD (nitrobenzoxadiazole), OG (Oregon Green), and CF (5-carboxyfluorescein) were conjugated with the dipeptide β-Ala-Lys, the peptide moiety of the well-established peptide transporter substrate β-Ala-Lys(AMCA) (AMCA: 7-amino-4-methyl-coumarin-3-acetic acid) by modifying it with respect to side-chain length and functional end groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!